RosettaCodeData/Task/Hamming-numbers/Python/hamming-numbers-1.py

47 lines
1.6 KiB
Python

from itertools import islice
def hamming2():
'''\
This version is based on a snippet from:
https://web.archive.org/web/20081219014725/http://dobbscodetalk.com:80
/index.php?option=com_content&task=view&id=913&Itemid=85
http://www.drdobbs.com/architecture-and-design/hamming-problem/228700538
Hamming problem
Written by Will Ness
December 07, 2008
When expressed in some imaginary pseudo-C with automatic
unlimited storage allocation and BIGNUM arithmetics, it can be
expressed as:
hamming = h where
array h;
n=0; h[0]=1; i=0; j=0; k=0;
x2=2*h[ i ]; x3=3*h[j]; x5=5*h[k];
repeat:
h[++n] = min(x2,x3,x5);
if (x2==h[n]) { x2=2*h[++i]; }
if (x3==h[n]) { x3=3*h[++j]; }
if (x5==h[n]) { x5=5*h[++k]; }
'''
h = 1
_h=[h] # memoized
multipliers = (2, 3, 5)
multindeces = [0 for i in multipliers] # index into _h for multipliers
multvalues = [x * _h[i] for x,i in zip(multipliers, multindeces)]
yield h
while True:
h = min(multvalues)
_h.append(h)
for (n,(v,x,i)) in enumerate(zip(multvalues, multipliers, multindeces)):
if v == h:
i += 1
multindeces[n] = i
multvalues[n] = x * _h[i]
# cap the memoization
mini = min(multindeces)
if mini >= 1000:
del _h[:mini]
multindeces = [i - mini for i in multindeces]
#
yield h