from itertools import islice def hamming2(): '''\ This version is based on a snippet from: https://web.archive.org/web/20081219014725/http://dobbscodetalk.com:80 /index.php?option=com_content&task=view&id=913&Itemid=85 http://www.drdobbs.com/architecture-and-design/hamming-problem/228700538 Hamming problem Written by Will Ness December 07, 2008 When expressed in some imaginary pseudo-C with automatic unlimited storage allocation and BIGNUM arithmetics, it can be expressed as: hamming = h where array h; n=0; h[0]=1; i=0; j=0; k=0; x2=2*h[ i ]; x3=3*h[j]; x5=5*h[k]; repeat: h[++n] = min(x2,x3,x5); if (x2==h[n]) { x2=2*h[++i]; } if (x3==h[n]) { x3=3*h[++j]; } if (x5==h[n]) { x5=5*h[++k]; } ''' h = 1 _h=[h] # memoized multipliers = (2, 3, 5) multindeces = [0 for i in multipliers] # index into _h for multipliers multvalues = [x * _h[i] for x,i in zip(multipliers, multindeces)] yield h while True: h = min(multvalues) _h.append(h) for (n,(v,x,i)) in enumerate(zip(multvalues, multipliers, multindeces)): if v == h: i += 1 multindeces[n] = i multvalues[n] = x * _h[i] # cap the memoization mini = min(multindeces) if mini >= 1000: del _h[:mini] multindeces = [i - mini for i in multindeces] # yield h