RosettaCodeData/Task/Multiplicative-order/Ruby/multiplicative-order.rb

48 lines
939 B
Ruby

require 'rational' # for lcm
require 'mathn' # for prime_division
def powerMod(b, p, m)
result = 1
bits = p.to_s(2)
for bit in bits.split('')
result = (result * result) % m
if bit == '1'
result = (result * b) % m
end
end
result
end
def multOrder_(a, p, k)
pk = p ** k
t = (p - 1) * p ** (k - 1)
r = 1
for q, e in t.prime_division
x = powerMod(a, t / q ** e, pk)
while x != 1
r *= q
x = powerMod(x, q, pk)
end
end
r
end
def multOrder(a, m)
m.prime_division.inject(1) {|result, f|
result.lcm(multOrder_(a, *f))
}
end
puts multOrder(37, 1000) # 100
b = 10**20-1
puts multOrder(2, b) # 3748806900
puts multOrder(17,b) # 1499522760
b = 100001
puts multOrder(54,b)
puts powerMod(54, multOrder(54,b), b)
if (1...multOrder(54,b)).any? {|r| powerMod(54, r, b) == 1}
puts 'Exists a power r < 9090 where powerMod(54,r,b)==1'
else
puts 'Everything checks.'
end