RosettaCodeData/Task/Pells-equation/Java/pells-equation.java

86 lines
2.8 KiB
Java

import java.math.BigInteger;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.List;
public class PellsEquation {
public static void main(String[] args) {
NumberFormat format = NumberFormat.getInstance();
for ( int n : new int[] {61, 109, 181, 277, 8941} ) {
BigInteger[] pell = pellsEquation(n);
System.out.printf("x^2 - %3d * y^2 = 1 for:%n x = %s%n y = %s%n%n", n, format.format(pell[0]), format.format(pell[1]));
}
}
private static final BigInteger[] pellsEquation(int n) {
int a0 = (int) Math.sqrt(n);
if ( a0*a0 == n ) {
throw new IllegalArgumentException("ERROR 102: Invalid n = " + n);
}
List<Integer> continuedFrac = continuedFraction(n);
int count = 0;
BigInteger ajm2 = BigInteger.ONE;
BigInteger ajm1 = new BigInteger(a0 + "");
BigInteger bjm2 = BigInteger.ZERO;
BigInteger bjm1 = BigInteger.ONE;
boolean stop = (continuedFrac.size() % 2 == 1);
if ( continuedFrac.size() == 2 ) {
stop = true;
}
while ( true ) {
count++;
BigInteger bn = new BigInteger(continuedFrac.get(count) + "");
BigInteger aj = bn.multiply(ajm1).add(ajm2);
BigInteger bj = bn.multiply(bjm1).add(bjm2);
if ( stop && (count == continuedFrac.size()-2 || continuedFrac.size() == 2) ) {
return new BigInteger[] {aj, bj};
}
else if (continuedFrac.size() % 2 == 0 && count == continuedFrac.size()-2 ) {
stop = true;
}
if ( count == continuedFrac.size()-1 ) {
count = 0;
}
ajm2 = ajm1;
ajm1 = aj;
bjm2 = bjm1;
bjm1 = bj;
}
}
private static final List<Integer> continuedFraction(int n) {
List<Integer> answer = new ArrayList<Integer>();
int a0 = (int) Math.sqrt(n);
answer.add(a0);
int a = -a0;
int aStart = a;
int b = 1;
int bStart = b;
while ( true ) {
//count++;
int[] values = iterateFrac(n, a, b);
answer.add(values[0]);
a = values[1];
b = values[2];
if (a == aStart && b == bStart) break;
}
return answer;
}
// array[0] = new part of cont frac
// array[1] = new a
// array[2] = new b
private static final int[] iterateFrac(int n, int a, int b) {
int x = (int) Math.floor((b * Math.sqrt(n) - b * a)/(n - a * a));
int[] answer = new int[3];
answer[0] = x;
answer[1] = -(b * a + x *(n - a * a)) / b;
answer[2] = (n - a * a) / b;
return answer;
}
}