RosettaCodeData/Task/Modular-arithmetic/Python/modular-arithmetic.py

90 lines
2.9 KiB
Python

import operator
import functools
@functools.total_ordering
class Mod:
__slots__ = ['val','mod']
def __init__(self, val, mod):
if not isinstance(val, int):
raise ValueError('Value must be integer')
if not isinstance(mod, int) or mod<=0:
raise ValueError('Modulo must be positive integer')
self.val = val % mod
self.mod = mod
def __repr__(self):
return 'Mod({}, {})'.format(self.val, self.mod)
def __int__(self):
return self.val
def __eq__(self, other):
if isinstance(other, Mod):
if self.mod == other.mod:
return self.val==other.val
else:
return NotImplemented
elif isinstance(other, int):
return self.val == other
else:
return NotImplemented
def __lt__(self, other):
if isinstance(other, Mod):
if self.mod == other.mod:
return self.val<other.val
else:
return NotImplemented
elif isinstance(other, int):
return self.val < other
else:
return NotImplemented
def _check_operand(self, other):
if not isinstance(other, (int, Mod)):
raise TypeError('Only integer and Mod operands are supported')
if isinstance(other, Mod) and self.mod != other.mod:
raise ValueError('Inconsistent modulus: {} vs. {}'.format(self.mod, other.mod))
def __pow__(self, other):
self._check_operand(other)
# We use the built-in modular exponentiation function, this way we can avoid working with huge numbers.
return Mod(pow(self.val, int(other), self.mod), self.mod)
def __neg__(self):
return Mod(self.mod - self.val, self.mod)
def __pos__(self):
return self # The unary plus operator does nothing.
def __abs__(self):
return self # The value is always kept non-negative, so the abs function should do nothing.
# Helper functions to build common operands based on a template.
# They need to be implemented as functions for the closures to work properly.
def _make_op(opname):
op_fun = getattr(operator, opname) # Fetch the operator by name from the operator module
def op(self, other):
self._check_operand(other)
return Mod(op_fun(self.val, int(other)) % self.mod, self.mod)
return op
def _make_reflected_op(opname):
op_fun = getattr(operator, opname)
def op(self, other):
self._check_operand(other)
return Mod(op_fun(int(other), self.val) % self.mod, self.mod)
return op
# Build the actual operator overload methods based on the template.
for opname, reflected_opname in [('__add__', '__radd__'), ('__sub__', '__rsub__'), ('__mul__', '__rmul__')]:
setattr(Mod, opname, _make_op(opname))
setattr(Mod, reflected_opname, _make_reflected_op(opname))
def f(x):
return x**100+x+1
print(f(Mod(10,13)))
# Output: Mod(1, 13)