212 lines
7.3 KiB
Java
212 lines
7.3 KiB
Java
import java.math.BigDecimal;
|
|
import java.math.BigInteger;
|
|
import java.math.MathContext;
|
|
import java.util.ArrayList;
|
|
import java.util.Collections;
|
|
import java.util.List;
|
|
|
|
public class EgyptianFractions {
|
|
private static BigInteger gcd(BigInteger a, BigInteger b) {
|
|
if (b.equals(BigInteger.ZERO)) {
|
|
return a;
|
|
}
|
|
return gcd(b, a.mod(b));
|
|
}
|
|
|
|
private static class Frac implements Comparable<Frac> {
|
|
private BigInteger num, denom;
|
|
|
|
public Frac(BigInteger n, BigInteger d) {
|
|
if (d.equals(BigInteger.ZERO)) {
|
|
throw new IllegalArgumentException("Parameter d may not be zero.");
|
|
}
|
|
|
|
BigInteger nn = n;
|
|
BigInteger dd = d;
|
|
if (nn.equals(BigInteger.ZERO)) {
|
|
dd = BigInteger.ONE;
|
|
} else if (dd.compareTo(BigInteger.ZERO) < 0) {
|
|
nn = nn.negate();
|
|
dd = dd.negate();
|
|
}
|
|
BigInteger g = gcd(nn, dd).abs();
|
|
if (g.compareTo(BigInteger.ZERO) > 0) {
|
|
nn = nn.divide(g);
|
|
dd = dd.divide(g);
|
|
}
|
|
num = nn;
|
|
denom = dd;
|
|
}
|
|
|
|
public Frac(int n, int d) {
|
|
this(BigInteger.valueOf(n), BigInteger.valueOf(d));
|
|
}
|
|
|
|
public Frac plus(Frac rhs) {
|
|
return new Frac(
|
|
num.multiply(rhs.denom).add(denom.multiply(rhs.num)),
|
|
rhs.denom.multiply(denom)
|
|
);
|
|
}
|
|
|
|
public Frac unaryMinus() {
|
|
return new Frac(num.negate(), denom);
|
|
}
|
|
|
|
public Frac minus(Frac rhs) {
|
|
return plus(rhs.unaryMinus());
|
|
}
|
|
|
|
@Override
|
|
public int compareTo(Frac rhs) {
|
|
BigDecimal diff = this.toBigDecimal().subtract(rhs.toBigDecimal());
|
|
if (diff.compareTo(BigDecimal.ZERO) < 0) {
|
|
return -1;
|
|
}
|
|
if (BigDecimal.ZERO.compareTo(diff) < 0) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
@Override
|
|
public boolean equals(Object obj) {
|
|
if (null == obj || !(obj instanceof Frac)) {
|
|
return false;
|
|
}
|
|
Frac rhs = (Frac) obj;
|
|
return compareTo(rhs) == 0;
|
|
}
|
|
|
|
@Override
|
|
public String toString() {
|
|
if (denom.equals(BigInteger.ONE)) {
|
|
return num.toString();
|
|
}
|
|
return String.format("%s/%s", num, denom);
|
|
}
|
|
|
|
public BigDecimal toBigDecimal() {
|
|
BigDecimal bdn = new BigDecimal(num);
|
|
BigDecimal bdd = new BigDecimal(denom);
|
|
return bdn.divide(bdd, MathContext.DECIMAL128);
|
|
}
|
|
|
|
public List<Frac> toEgyptian() {
|
|
if (num.equals(BigInteger.ZERO)) {
|
|
return Collections.singletonList(this);
|
|
}
|
|
List<Frac> fracs = new ArrayList<>();
|
|
if (num.abs().compareTo(denom.abs()) >= 0) {
|
|
Frac div = new Frac(num.divide(denom), BigInteger.ONE);
|
|
Frac rem = this.minus(div);
|
|
fracs.add(div);
|
|
toEgyptian(rem.num, rem.denom, fracs);
|
|
} else {
|
|
toEgyptian(num, denom, fracs);
|
|
}
|
|
return fracs;
|
|
}
|
|
|
|
public void toEgyptian(BigInteger n, BigInteger d, List<Frac> fracs) {
|
|
if (n.equals(BigInteger.ZERO)) {
|
|
return;
|
|
}
|
|
BigDecimal n2 = new BigDecimal(n);
|
|
BigDecimal d2 = new BigDecimal(d);
|
|
BigDecimal[] divRem = d2.divideAndRemainder(n2, MathContext.UNLIMITED);
|
|
BigInteger div = divRem[0].toBigInteger();
|
|
if (divRem[1].compareTo(BigDecimal.ZERO) > 0) {
|
|
div = div.add(BigInteger.ONE);
|
|
}
|
|
fracs.add(new Frac(BigInteger.ONE, div));
|
|
BigInteger n3 = d.negate().mod(n);
|
|
if (n3.compareTo(BigInteger.ZERO) < 0) {
|
|
n3 = n3.add(n);
|
|
}
|
|
BigInteger d3 = d.multiply(div);
|
|
Frac f = new Frac(n3, d3);
|
|
if (f.num.equals(BigInteger.ONE)) {
|
|
fracs.add(f);
|
|
return;
|
|
}
|
|
toEgyptian(f.num, f.denom, fracs);
|
|
}
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
List<Frac> fracs = List.of(
|
|
new Frac(43, 48),
|
|
new Frac(5, 121),
|
|
new Frac(2014, 59)
|
|
);
|
|
for (Frac frac : fracs) {
|
|
List<Frac> list = frac.toEgyptian();
|
|
Frac first = list.get(0);
|
|
if (first.denom.equals(BigInteger.ONE)) {
|
|
System.out.printf("%s -> [%s] + ", frac, first);
|
|
} else {
|
|
System.out.printf("%s -> %s", frac, first);
|
|
}
|
|
for (int i = 1; i < list.size(); ++i) {
|
|
System.out.printf(" + %s", list.get(i));
|
|
}
|
|
System.out.println();
|
|
}
|
|
|
|
for (Integer r : List.of(98, 998)) {
|
|
if (r == 98) {
|
|
System.out.println("\nFor proper fractions with 1 or 2 digits:");
|
|
} else {
|
|
System.out.println("\nFor proper fractions with 1, 2 or 3 digits:");
|
|
}
|
|
|
|
int maxSize = 0;
|
|
List<Frac> maxSizeFracs = new ArrayList<>();
|
|
BigInteger maxDen = BigInteger.ZERO;
|
|
List<Frac> maxDenFracs = new ArrayList<>();
|
|
boolean[][] sieve = new boolean[r + 1][];
|
|
for (int i = 0; i < r + 1; ++i) {
|
|
sieve[i] = new boolean[r + 2];
|
|
}
|
|
for (int i = 1; i < r; ++i) {
|
|
for (int j = i + 1; j < r + 1; ++j) {
|
|
if (sieve[i][j]) continue;
|
|
Frac f = new Frac(i, j);
|
|
List<Frac> list = f.toEgyptian();
|
|
int listSize = list.size();
|
|
if (listSize > maxSize) {
|
|
maxSize = listSize;
|
|
maxSizeFracs.clear();
|
|
maxSizeFracs.add(f);
|
|
} else if (listSize == maxSize) {
|
|
maxSizeFracs.add(f);
|
|
}
|
|
BigInteger listDen = list.get(list.size() - 1).denom;
|
|
if (listDen.compareTo(maxDen) > 0) {
|
|
maxDen = listDen;
|
|
maxDenFracs.clear();
|
|
maxDenFracs.add(f);
|
|
} else if (listDen.equals(maxDen)) {
|
|
maxDenFracs.add(f);
|
|
}
|
|
if (i < r / 2) {
|
|
int k = 2;
|
|
while (true) {
|
|
if (j * k > r + 1) break;
|
|
sieve[i * k][j * k] = true;
|
|
k++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
System.out.printf(" largest number of items = %s\n", maxSize);
|
|
System.out.printf("fraction(s) with this number : %s\n", maxSizeFracs);
|
|
String md = maxDen.toString();
|
|
System.out.printf(" largest denominator = %s digits, ", md.length());
|
|
System.out.printf("%s...%s\n", md.substring(0, 20), md.substring(md.length() - 20, md.length()));
|
|
System.out.printf("fraction(s) with this denominator : %s\n", maxDenFracs);
|
|
}
|
|
}
|
|
}
|