RosettaCodeData/Task/Prime-triangle/Python/prime-triangle.py

50 lines
1.5 KiB
Python

from numpy import array
# for Rosetta Code by MG - 20230312
def is_prime(n: int) -> bool:
assert n < 64
return ((1 << n) & 0x28208a20a08a28ac) != 0
def prime_triangle_row(a: array, start: int, length: int) -> bool:
if length == 2:
return is_prime(a[0] + a[1])
for i in range(1, length - 1, 1):
if is_prime(a[start] + a[start + i]):
a[start + i], a[start + 1] = a[start + 1], a[start + i]
if prime_triangle_row(a, start + 1, length - 1):
return True
a[start + i], a[start + 1] = a[start + 1], a[start + i]
return False
def prime_triangle_count(a: array, start: int, length: int) -> int:
count: int = 0
if length == 2:
if is_prime(a[start] + a[start + 1]):
count += 1
else:
for i in range(1, length - 1, 1):
if is_prime(a[start] + a[start + i]):
a[start + i], a[start + 1] = a[start + 1], a[start + i]
count += prime_triangle_count(a, start + 1, length - 1)
a[start + i], a[start + 1] = a[start + 1], a[start + i]
return count
def print_row(a: array):
if a == []:
return
print("%2d"% a[0], end=" ")
for x in a[1:]:
print("%2d"% x, end=" ")
print()
for n in range(2, 21):
tr: array = [_ for _ in range(1, n + 1)]
if prime_triangle_row(tr, 0, n):
print_row(tr)
print()
for n in range(2, 21):
tr: array = [_ for _ in range(1, n + 1)]
if n > 2:
print(" ", end="")
print(prime_triangle_count(tr, 0, n), end="")
print()