45 lines
1.7 KiB
Python
45 lines
1.7 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
import decimal as dc # decimal floating point arithmetic with arbitrary precision
|
|
dc.getcontext().prec = 80 # set precision to 80 digits (about 256 bits)
|
|
|
|
d, h = 50, 1000 # pixel density (= image width) and image height
|
|
n, r = 80000, 100000 # number of iterations and escape radius (r > 2)
|
|
|
|
a = dc.Decimal("-1.256827152259138864846434197797294538253477389787308085590211144291")
|
|
b = dc.Decimal(".37933802890364143684096784819544060002129071484943239316486643285025")
|
|
|
|
S = np.zeros(n+1, dtype=np.complex128)
|
|
u, v = dc.Decimal(0), dc.Decimal(0)
|
|
|
|
for k in range(n+1):
|
|
S[k] = float(u) + float(v) * 1j
|
|
if u ** 2 + v ** 2 < r ** 2:
|
|
u, v = u ** 2 - v ** 2 + a, 2 * u * v + b
|
|
else:
|
|
print("The reference sequence diverges within %s iterations." % k)
|
|
break
|
|
|
|
x = np.linspace(0, 2, num=d+1, dtype=np.float64)
|
|
y = np.linspace(0, 2 * h / d, num=h+1, dtype=np.float64)
|
|
|
|
A, B = np.meshgrid(x * np.pi, y * np.pi)
|
|
C = 8.0 * np.exp((A + B * 1j) * 1j)
|
|
|
|
E, Z, dZ = np.zeros_like(C), np.zeros_like(C), np.zeros_like(C)
|
|
D, I, J = np.zeros(C.shape), np.zeros(C.shape, dtype=np.int64), np.zeros(C.shape, dtype=np.int64)
|
|
|
|
for k in range(n):
|
|
Z2 = Z.real ** 2 + Z.imag ** 2
|
|
M, R = Z2 < r ** 2, Z2 < E.real ** 2 + E.imag ** 2
|
|
E[R], I[R] = Z[R], J[R] # rebase when z is closer to zero
|
|
E[M], I[M] = (2 * S[I[M]] + E[M]) * E[M] + C[M], I[M] + 1
|
|
Z[M], dZ[M] = S[I[M]] + E[M], 2 * Z[M] * dZ[M] + 1
|
|
|
|
N = abs(Z) > 2 # exterior distance estimation
|
|
D[N] = np.log(abs(Z[N])) * abs(Z[N]) / abs(dZ[N])
|
|
|
|
plt.imshow(D.T ** 0.015, cmap=plt.cm.nipy_spectral, origin="lower")
|
|
plt.savefig("Mercator_Mandelbrot_deep_map.png", dpi=200)
|