148 lines
4.5 KiB
Plaintext
148 lines
4.5 KiB
Plaintext
import "graphics" for Canvas, Color, ImageData
|
|
import "dome" for Window
|
|
|
|
class ArrayData {
|
|
construct new(width, height) {
|
|
_width = width
|
|
_height = height
|
|
_dataArray = List.filled(width * height, 0)
|
|
}
|
|
|
|
width { _width }
|
|
height { _height }
|
|
|
|
[x, y] { _dataArray[y * _width + x] }
|
|
|
|
[x, y]=(v) { _dataArray[y * _width + x] = v }
|
|
}
|
|
|
|
class ImageConvolution {
|
|
construct new(width, height, image1, image2, kernel, divisor) {
|
|
Window.title = "Image Convolution"
|
|
Window.resize(width, height)
|
|
Canvas.resize(width, height)
|
|
_width = width
|
|
_height = height
|
|
_image1 = image1
|
|
_image2 = image2
|
|
_kernel = kernel
|
|
_divisor = divisor
|
|
}
|
|
|
|
init() {
|
|
var dataArrays = getArrayDatasFromImage(_image1)
|
|
for (i in 0...dataArrays.count) {
|
|
dataArrays[i] = convolve(dataArrays[i], _kernel, _divisor)
|
|
}
|
|
writeOutputImage(_image2, dataArrays)
|
|
}
|
|
|
|
bound(value, endIndex) {
|
|
if (value < 0) return 0
|
|
if (value < endIndex) return value
|
|
return endIndex - 1
|
|
}
|
|
|
|
convolve(inputData, kernel, kernelDivisor) {
|
|
var inputWidth = inputData.width
|
|
var inputHeight = inputData.height
|
|
var kernelWidth = kernel.width
|
|
var kernelHeight = kernel.height
|
|
if (kernelWidth <= 0 || (kernelWidth & 1) != 1) {
|
|
Fiber.abort("Kernel must have odd width")
|
|
}
|
|
if (kernelHeight <= 0 || (kernelHeight & 1) != 1) {
|
|
Fiber.abort("Kernel must have odd height")
|
|
}
|
|
var kernelWidthRadius = kernelWidth >> 1
|
|
var kernelHeightRadius = kernelHeight >> 1
|
|
|
|
var outputData = ArrayData.new(inputWidth, inputHeight)
|
|
for (i in inputWidth - 1..0) {
|
|
for (j in inputHeight - 1..0) {
|
|
var newValue = 0
|
|
for (kw in kernelWidth - 1..0) {
|
|
for (kh in kernelHeight - 1..0) {
|
|
newValue = newValue + kernel[kw, kh] * inputData[
|
|
bound(i + kw - kernelWidthRadius, inputWidth),
|
|
bound(j + kh - kernelHeightRadius, inputHeight)
|
|
]
|
|
outputData[i, j] = (newValue / kernelDivisor).round
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return outputData
|
|
}
|
|
|
|
getArrayDatasFromImage(filename) {
|
|
var inputImage = ImageData.load(filename)
|
|
inputImage.draw(0, 0)
|
|
Canvas.print(filename, _width * 1/6, _height * 5/6, Color.white)
|
|
var width = inputImage.width
|
|
var height = inputImage.height
|
|
var rgbData = []
|
|
for (y in 0...height) {
|
|
for (x in 0...width) rgbData.add(inputImage.pget(x, y))
|
|
}
|
|
var reds = ArrayData.new(width, height)
|
|
var greens = ArrayData.new(width, height)
|
|
var blues = ArrayData.new(width, height)
|
|
for (y in 0...height) {
|
|
for (x in 0...width) {
|
|
var rgbValue = rgbData[y * width + x]
|
|
reds[x, y] = rgbValue.r
|
|
greens[x,y] = rgbValue.g
|
|
blues[x, y] = rgbValue.b
|
|
}
|
|
}
|
|
return [reds, greens, blues]
|
|
}
|
|
|
|
writeOutputImage(filename, redGreenBlue) {
|
|
var reds = redGreenBlue[0]
|
|
var greens = redGreenBlue[1]
|
|
var blues = redGreenBlue[2]
|
|
var outputImage = ImageData.create(filename, reds.width, reds.height)
|
|
for (y in 0...reds.height) {
|
|
for (x in 0...reds.width) {
|
|
var red = bound(reds[x, y], 256)
|
|
var green = bound(greens[x, y], 256)
|
|
var blue = bound(blues[x, y], 256)
|
|
var c = Color.new(red, green, blue)
|
|
outputImage.pset(x, y, c)
|
|
}
|
|
}
|
|
outputImage.draw(_width/2, 0)
|
|
Canvas.print(filename, _width * 2/3, _height * 5/6, Color.white)
|
|
outputImage.saveToFile(filename)
|
|
}
|
|
|
|
update() {}
|
|
|
|
draw(alpha) {}
|
|
}
|
|
|
|
var k = [
|
|
[1, 4, 7, 4, 1],
|
|
[4, 16, 26, 16, 4],
|
|
[7, 26, 41, 26, 7],
|
|
[4, 16, 26, 16, 4],
|
|
[1, 4, 7, 4, 1]
|
|
]
|
|
|
|
var divisor = 273
|
|
|
|
var image1 = "Pentagon.png"
|
|
var image2 = "Pentagon2.png"
|
|
|
|
System.print("Input file %(image1), output file %(image2).")
|
|
System.print("Kernel size: %(k.count) x %(k[0].count), divisor %(divisor)")
|
|
System.print(k.join("\n"))
|
|
|
|
var kernel = ArrayData.new(k.count, k[0].count)
|
|
for (y in 0...k[0].count) {
|
|
for (x in 0...k.count) kernel[x, y] = k[x][y]
|
|
}
|
|
var Game = ImageConvolution.new(700, 300, image1, image2, kernel, divisor)
|