RosettaCodeData/Task/Minkowski-question-mark-fun.../Haskell/minkowski-question-mark-fun...

57 lines
1.6 KiB
Haskell

import Data.Tree
import Data.Ratio
import Data.List
intervalTree :: (a -> a -> a) -> (a, a) -> Tree a
intervalTree node = unfoldTree $
\(a, b) -> let m = node a b in (m, [(a,m), (m,b)])
Node a _ ==> Node b [] = const b
Node a [] ==> Node b _ = const b
Node a [l1, r1] ==> Node b [l2, r2] =
\x -> case x `compare` a of
LT -> (l1 ==> l2) x
EQ -> b
GT -> (r1 ==> r2) x
mirror :: Num a => Tree a -> Tree a
mirror t = Node 0 [reflect (negate <$> t), t]
where
reflect (Node a [l,r]) = Node a [reflect r, reflect l]
------------------------------------------------------------
sternBrocot :: Tree Rational
sternBrocot = toRatio <$> intervalTree mediant ((0,1), (1,0))
where
mediant (p, q) (r, s) = (p + r, q + s)
toRatio (p, q) = p % q
minkowski :: Tree Rational
minkowski = toRatio <$> intervalTree mean ((0,1), (1,0))
mean (p, q) (1, 0) = (p+1, q)
mean (p, q) (r, s) = (p*s + q*r, 2*q*s)
questionMark, invQuestionMark :: Rational -> Rational
questionMark = mirror sternBrocot ==> mirror minkowski
invQuestionMark = mirror minkowski ==> mirror sternBrocot
------------------------------------------------------------
-- Floating point trees and functions
sternBrocotF :: Tree Double
sternBrocotF = mirror $ fromRational <$> sternBrocot
minkowskiF :: Tree Double
minkowskiF = mirror $ intervalTree mean (0, 1/0)
where
mean a b | isInfinite b = a + 1
| otherwise = (a + b) / 2
questionMarkF, invQuestionMarkF :: Double -> Double
questionMarkF = sternBrocotF ==> minkowskiF
invQuestionMarkF = minkowskiF ==> sternBrocotF