RosettaCodeData/Task/Evolutionary-algorithm/Ada/evolutionary-algorithm.ada

125 lines
4.2 KiB
Ada

with Ada.Text_IO;
with Ada.Numerics.Discrete_Random;
with Ada.Numerics.Float_Random;
with Ada.Strings.Fixed;
with Ada.Strings.Maps;
procedure Evolution is
-- only upper case characters allowed, and space, which uses '@' in
-- internal representation (allowing subtype of Character).
subtype DNA_Char is Character range '@' .. 'Z';
-- DNA string is as long as target string.
subtype DNA_String is String (1 .. 28);
-- target string translated to DNA_Char string
Target : constant DNA_String := "METHINKS@IT@IS@LIKE@A@WEASEL";
-- calculate the 'closeness' to the target DNA.
-- it returns a number >= 0 that describes how many chars are correct.
-- can be improved much to make evolution better, but keep simple for
-- this example.
function Fitness (DNA : DNA_String) return Natural is
Result : Natural := 0;
begin
for Position in DNA'Range loop
if DNA (Position) = Target (Position) then
Result := Result + 1;
end if;
end loop;
return Result;
end Fitness;
-- output the DNA using the mapping
procedure Output_DNA (DNA : DNA_String; Prefix : String := "") is
use Ada.Strings.Maps;
Output_Map : Character_Mapping;
begin
Output_Map := To_Mapping
(From => To_Sequence (To_Set (('@'))),
To => To_Sequence (To_Set ((' '))));
Ada.Text_IO.Put (Prefix);
Ada.Text_IO.Put (Ada.Strings.Fixed.Translate (DNA, Output_Map));
Ada.Text_IO.Put_Line (", fitness: " & Integer'Image (Fitness (DNA)));
end Output_DNA;
-- DNA_Char is a discrete type, use Ada RNG
package Random_Char is new Ada.Numerics.Discrete_Random (DNA_Char);
DNA_Generator : Random_Char.Generator;
-- need generator for floating type, too
Float_Generator : Ada.Numerics.Float_Random.Generator;
-- returns a mutated copy of the parent, applying the given mutation rate
function Mutate (Parent : DNA_String;
Mutation_Rate : Float)
return DNA_String
is
Result : DNA_String := Parent;
begin
for Position in Result'Range loop
if Ada.Numerics.Float_Random.Random (Float_Generator) <= Mutation_Rate
then
Result (Position) := Random_Char.Random (DNA_Generator);
end if;
end loop;
return Result;
end Mutate;
-- genetic algorithm to evolve the string
-- could be made a function returning the final string
procedure Evolve (Child_Count : Positive := 100;
Mutation_Rate : Float := 0.2)
is
type Child_Array is array (1 .. Child_Count) of DNA_String;
-- determine the fittest of the candidates
function Fittest (Candidates : Child_Array) return DNA_String is
The_Fittest : DNA_String := Candidates (1);
begin
for Candidate in Candidates'Range loop
if Fitness (Candidates (Candidate)) > Fitness (The_Fittest)
then
The_Fittest := Candidates (Candidate);
end if;
end loop;
return The_Fittest;
end Fittest;
Parent, Next_Parent : DNA_String;
Children : Child_Array;
Loop_Counter : Positive := 1;
begin
-- initialize Parent
for Position in Parent'Range loop
Parent (Position) := Random_Char.Random (DNA_Generator);
end loop;
Output_DNA (Parent, "First: ");
while Parent /= Target loop
-- mutation loop
for Child in Children'Range loop
Children (Child) := Mutate (Parent, Mutation_Rate);
end loop;
Next_Parent := Fittest (Children);
-- don't allow weaker children as the parent
if Fitness (Next_Parent) > Fitness (Parent) then
Parent := Next_Parent;
end if;
-- output every 20th generation
if Loop_Counter mod 20 = 0 then
Output_DNA (Parent, Integer'Image (Loop_Counter) & ": ");
end if;
Loop_Counter := Loop_Counter + 1;
end loop;
Output_DNA (Parent, "Final (" & Integer'Image (Loop_Counter) & "): ");
end Evolve;
begin
-- initialize the random number generators
Random_Char.Reset (DNA_Generator);
Ada.Numerics.Float_Random.Reset (Float_Generator);
-- evolve!
Evolve;
end Evolution;