RosettaCodeData/Task/Arithmetic-Complex/Standard-ML/arithmetic-complex.ml

44 lines
1.2 KiB
OCaml

(* Signature for complex numbers *)
signature COMPLEX = sig
type num
val complex : real * real -> num
val negative : num -> num
val plus : num -> num -> num
val minus : num -> num -> num
val times : num -> num -> num
val invert : num -> num
val print_number : num -> unit
end;
(* Actual implementation *)
structure Complex :> COMPLEX = struct
type num = real * real
fun complex (a, b) = (a, b)
fun negative (a, b) = (Real.~a, Real.~b)
fun plus (a1, b1) (a2, b2) = (Real.+ (a1, a2), Real.+(b1, b2))
fun minus i1 i2 = plus i1 (negative i2)
fun times (a1, b1) (a2, b2)= (Real.*(a1, a2) - Real.*(b1, b2), Real.*(a1, b2) + Real.*(a2, b1))
fun invert (a, b) =
let
val denom = a * a + b * b
in
(a / denom, ~b / denom)
end
fun print_number (a, b) =
print (Real.toString(a) ^ " + " ^ Real.toString(b) ^ "i\n")
end;
val i1 = Complex.complex(1.0,2.0); (* 1 + 2i *)
val i2 = Complex.complex(3.0,4.0); (* 3 + 4i *)
Complex.print_number(Complex.negative(i1)); (* -1 - 2i *)
Complex.print_number(Complex.plus i1 i2); (* 4 + 6i *)
Complex.print_number(Complex.minus i2 i1); (* 2 + 2i *)
Complex.print_number(Complex.times i1 i2); (* -5 + 10i *)
Complex.print_number(Complex.invert i1); (* 1/5 - 2i/5 *)