RosettaCodeData/Task/Topological-sort/Object-Pascal/topological-sort.pas

413 lines
14 KiB
ObjectPascal

program topologicalsortrosetta;
{*
Topological sorter to parse e.g. dependencies.
Written for FreePascal 2.4.x/2.5.1. Probably works in Delphi, but you'd have to
change some units.
*}
{$IFDEF FPC}
// FreePascal-specific setup
{$mode objfpc}
uses {$IFDEF UNIX}
cwstring, {* widestring support for unix *} {$IFDEF UseCThreads}
cthreads, {$ENDIF UseCThreads} {$ENDIF UNIX}
Classes,
SysUtils;
{$ENDIF}
type
RNodeIndex = record
NodeName: WideString; //Name of the node
//Index: integer; //Index number used in DepGraph. For now, we can distill the index from the array index. If we want to use a TList or similar, we'd need an index property
Order: integer; //Order when sorted
end;
RDepGraph = record
Node: integer; //Refers to Index in NodeIndex
DependsOn: integer; //The Node depends on this other Node.
end;
{ TTopologicalSort }
TTopologicalSort = class(TObject)
private
Nodes: array of RNodeIndex;
DependencyGraph: array of RDepGraph;
FCanBeSorted: boolean;
function SearchNode(NodeName: WideString): integer;
function SearchIndex(NodeID: integer): WideString;
function DepFromNodeID(NodeID: integer): integer;
function DepFromDepID(DepID: integer): integer;
function DepFromNodeIDDepID(NodeID, DepID: integer): integer;
procedure DelDependency(const Index: integer);
public
constructor Create;
destructor Destroy; override;
procedure SortOrder(var Output: TStringList);
procedure AddNode(NodeName: WideString);
procedure AddDependency(NodeName, DependsOn: WideString);
procedure AddNodeDependencies(NodeAndDependencies: TStringList);
//Each string has node, and the nodes it depends on. This allows insertion of an entire dependency graph at once
//procedure DelNode(NodeName: Widestring);
procedure DelDependency(NodeName, DependsOn: WideString);
property CanBeSorted: boolean read FCanBeSorted;
end;
const
INVALID = -1;
// index not found for index search functions, no sort order defined, or record invalid/deleted
function TTopologicalSort.SearchNode(NodeName: WideString): integer;
var
Counter: integer;
begin
// Return -1 if node not found. If node found, return index in array
Result := INVALID;
for Counter := 0 to High(Nodes) do
begin
if Nodes[Counter].NodeName = NodeName then
begin
Result := Counter;
break;
end;
end;
end;
function TTopologicalSort.SearchIndex(NodeID: integer): WideString;
//Look up name for the index
begin
if (NodeID > 0) and (NodeID <= High(Nodes)) then
begin
Result := Nodes[NodeID].NodeName;
end
else
begin
Result := 'ERROR'; //something's fishy, this shouldn't happen
end;
end;
function TTopologicalSort.DepFromNodeID(NodeID: integer): integer;
// Look for Node index number in the dependency graph
// and return the first node found. If nothing found, return -1
var
Counter: integer;
begin
Result := INVALID;
for Counter := 0 to High(DependencyGraph) do
begin
if DependencyGraph[Counter].Node = NodeID then
begin
Result := Counter;
break;
end;
end;
end;
function TTopologicalSort.DepFromDepID(DepID: integer): integer;
// Look for dependency index number in the dependency graph
// and return the index for the first one found. If nothing found, return -1
var
Counter: integer;
begin
Result := INVALID;
for Counter := 0 to High(DependencyGraph) do
begin
if DependencyGraph[Counter].DependsOn = DepID then
begin
Result := Counter;
break;
end;
end;
end;
function TTopologicalSort.DepFromNodeIDDepID(NodeID, DepID: integer): integer;
// Shows index for the dependency from NodeID on DepID, or INVALID if not found
var
Counter: integer;
begin
Result := INVALID;
for Counter := 0 to High(DependencyGraph) do
begin
if DependencyGraph[Counter].Node = NodeID then
if DependencyGraph[Counter].DependsOn = DepID then
begin
Result := Counter;
break;
end;
end;
end;
procedure TTopologicalSort.DelDependency(const Index: integer);
// Removes dependency from array.
// Is fastest when the dependency is near the top of the array
// as we're copying the remaining elements.
var
Counter: integer;
OriginalLength: integer;
begin
OriginalLength := Length(DependencyGraph);
if Index = OriginalLength - 1 then
begin
SetLength(DependencyGraph, OriginalLength - 1);
end;
if Index < OriginalLength - 1 then
begin
for Counter := Index to OriginalLength - 2 do
begin
DependencyGraph[Counter] := DependencyGraph[Counter + 1];
end;
SetLength(DependencyGraph, OriginalLength - 1);
end;
if Index > OriginalLength - 1 then
begin
// This could happen when deleting on an empty array:
raise Exception.Create('Tried to delete index ' + IntToStr(Index) +
' while the maximum index was ' + IntToStr(OriginalLength - 1));
end;
end;
constructor TTopologicalSort.Create;
begin
inherited Create;
end;
destructor TTopologicalSort.Destroy;
begin
// Clear up data just to make sure:
Finalize(DependencyGraph);
Finalize(Nodes);
inherited;
end;
procedure TTopologicalSort.SortOrder(var Output: TStringList);
var
Counter: integer;
NodeCounter: integer;
OutputSortOrder: integer;
DidSomething: boolean; //used to detect cycles (circular references)
Node: integer;
begin
OutputSortOrder := 0;
DidSomething := True; // prime the loop below
FCanBeSorted := True; //hope for the best.
while (DidSomething = True) do
begin
// 1. Find all nodes (now) without dependencies, output them first and remove the dependencies:
// 1.1 Nodes that are not present in the dependency graph at all:
for Counter := 0 to High(Nodes) do
begin
if DepFromNodeID(Counter) = INVALID then
begin
if DepFromDepID(Counter) = INVALID then
begin
// Node doesn't occur in either side of the dependency graph, so it has sort order 0:
DidSomething := True;
if (Nodes[Counter].Order = INVALID) or
(Nodes[Counter].Order > OutputSortOrder) then
begin
// Enter sort order if the node doesn't have a lower valid order already.
Nodes[Counter].Order := OutputSortOrder;
end;
end; //Invalid Dep
end; //Invalid Node
end; //Count
// Done with the first batch, so we can increase the sort order:
OutputSortOrder := OutputSortOrder + 1;
// 1.2 Nodes that are only present on the right hand side of the dep graph:
DidSomething := False;
// reverse order so we can delete dependencies without passing upper array
for Counter := High(DependencyGraph) downto 0 do
begin
Node := DependencyGraph[Counter].DependsOn; //the depended node
if (DepFromNodeID(Node) = INVALID) then
begin
DidSomething := True;
//Delete dependency so we don't hit it again:
DelDependency(Counter);
if (Nodes[Node].Order = INVALID) or (Nodes[Node].Order > OutputSortOrder) then
begin
// Enter sort order if the node doesn't have a lower valid order already.
Nodes[Node].Order := OutputSortOrder;
end;
end;
OutputSortOrder := OutputSortOrder + 1; //next iteration
end;
// 2. Go back to 1 until we can't do more work, and do some bookkeeping:
OutputSortOrder := OutputSortOrder + 1;
end; //outer loop for 1 to 2
OutputSortOrder := OutputSortOrder - 1; //fix unused last loop.
// 2. If we have dependencies left, we have a cycle; exit.
if (High(DependencyGraph) > 0) then
begin
FCanBeSorted := False; //indicate we have a cycle
Output.Add('Cycle (circular dependency) detected, cannot sort further. Dependencies left:');
for Counter := 0 to High(DependencyGraph) do
begin
Output.Add(SearchIndex(DependencyGraph[Counter].Node) +
' depends on: ' + SearchIndex(DependencyGraph[Counter].DependsOn));
end;
end
else
begin
// No cycle:
// Now parse results, if we have them
for Counter := 0 to OutputSortOrder do
begin
for NodeCounter := 0 to High(Nodes) do
begin
if Nodes[NodeCounter].Order = Counter then
begin
Output.Add(Nodes[NodeCounter].NodeName);
end;
end; //output each result
end; //order iteration
end; //cycle detection
end;
procedure TTopologicalSort.AddNode(NodeName: WideString);
var
NodesNewLength: integer;
begin
// Adds node; make sure we don't add duplicate entries
if SearchNode(NodeName) = INVALID then
begin
NodesNewLength := Length(Nodes) + 1;
SetLength(Nodes, NodesNewLength);
Nodes[NodesNewLength - 1].NodeName := NodeName; //Arrays are 0 based
//Nodes[NodesNewLength -1].Index := //If we change the object to a tlist or something, we already have an index property
Nodes[NodesNewLength - 1].Order := INVALID; //default value
end;
end;
procedure TTopologicalSort.AddDependency(NodeName, DependsOn: WideString);
begin
// Make sure both nodes in the dependency exist as a node
if SearchNode(NodeName) = INVALID then
begin
Self.AddNode(NodeName);
end;
if SearchNode(DependsOn) = INVALID then
begin
Self.AddNode(DependsOn);
end;
// Add the dependency, only if we don't depend on ourselves:
if NodeName <> DependsOn then
begin
SetLength(DependencyGraph, Length(DependencyGraph) + 1);
DependencyGraph[High(DependencyGraph)].Node := SearchNode(NodeName);
DependencyGraph[High(DependencyGraph)].DependsOn := SearchNode(DependsOn);
end;
end;
procedure TTopologicalSort.AddNodeDependencies(NodeAndDependencies: TStringList);
// Takes a stringlist containing a list of strings. Each string contains node names
// separated by spaces. The first node depends on the others. It is permissible to have
// only one node name, which doesn't depend on anything.
// This procedure will add the dependencies and the nodes in one go.
var
Deplist: TStringList;
StringCounter: integer;
NodeCounter: integer;
begin
if Assigned(NodeAndDependencies) then
begin
DepList := TStringList.Create;
try
for StringCounter := 0 to NodeAndDependencies.Count - 1 do
begin
// For each string in the argument: split into names, and process:
DepList.Delimiter := ' '; //use space to separate the entries
DepList.StrictDelimiter := False; //allows us to ignore double spaces in input.
DepList.DelimitedText := NodeAndDependencies[StringCounter];
for NodeCounter := 0 to DepList.Count - 1 do
begin
if NodeCounter = 0 then
begin
// Add the first node, which might be the only one.
Self.AddNode(Deplist[0]);
end;
if NodeCounter > 0 then
begin
// Only add dependency from the second item onwards
// The AddDependency code will automatically add Deplist[0] to the Nodes, if required
Self.AddDependency(DepList[0], DepList[NodeCounter]);
end;
end;
end;
finally
DepList.Free;
end;
end;
end;
procedure TTopologicalSort.DelDependency(NodeName, DependsOn: WideString);
// Delete the record.
var
NodeID: integer;
DependsID: integer;
Dependency: integer;
begin
NodeID := Self.SearchNode(NodeName);
DependsID := Self.SearchNode(DependsOn);
if (NodeID <> INVALID) and (DependsID <> INVALID) then
begin
// Look up dependency and delete it.
Dependency := Self.DepFromNodeIDDepID(NodeID, DependsID);
if (Dependency <> INVALID) then
begin
Self.DelDependency(Dependency);
end;
end;
end;
// Main program:
var
InputList: TStringList; //Lines of dependencies
TopSort: TTopologicalSort; //Topological sort object
OutputList: TStringList; //Sorted dependencies
Counter: integer;
begin
//Actual sort
InputList := TStringList.Create;
// Add rosetta code sample input separated by at least one space in the lines
InputList.Add(
'des_system_lib std synopsys std_cell_lib des_system_lib dw02 dw01 ramlib ieee');
InputList.Add('dw01 ieee dw01 dware gtech');
InputList.Add('dw02 ieee dw02 dware');
InputList.Add('dw03 std synopsys dware dw03 dw02 dw01 ieee gtech');
InputList.Add('dw04 dw04 ieee dw01 dware gtech');
InputList.Add('dw05 dw05 ieee dware');
InputList.Add('dw06 dw06 ieee dware');
InputList.Add('dw07 ieee dware');
InputList.Add('dware ieee dware');
InputList.Add('gtech ieee gtech');
InputList.Add('ramlib std ieee');
InputList.Add('std_cell_lib ieee std_cell_lib');
InputList.Add('synopsys');
TopSort := TTopologicalSort.Create;
OutputList := TStringList.Create;
try
TopSort.AddNodeDependencies(InputList); //read in nodes
TopSort.SortOrder(OutputList); //perform the sort
for Counter := 0 to OutputList.Count - 1 do
begin
writeln(OutputList[Counter]);
end;
except
on E: Exception do
begin
Writeln(stderr, 'Error: ', DateTimeToStr(Now),
': Error sorting. Technical details: ',
E.ClassName, '/', E.Message);
end;
end; //try
OutputList.Free;
TopSort.Free;
InputList.Free;
end.