164 lines
5.6 KiB
Swift
164 lines
5.6 KiB
Swift
// Matrix Strassen Multiplication
|
|
func strassenMultiply(matrix1: Matrix, matrix2: Matrix) -> Matrix {
|
|
precondition(matrix1.columns == matrix2.columns,
|
|
"Two matrices can only be matrix multiplied if one has dimensions mxn & the other has dimensions nxp where m, n, p are in R")
|
|
|
|
// Transform to square matrix
|
|
let maxColumns = Swift.max(matrix1.rows, matrix1.columns, matrix2.rows, matrix2.columns)
|
|
let pwr2 = nextPowerOfTwo(num: maxColumns)
|
|
var sqrMatrix1 = Matrix(rows: pwr2, columns: pwr2)
|
|
var sqrMatrix2 = Matrix(rows: pwr2, columns: pwr2)
|
|
|
|
// fill square matrix 1 with values
|
|
for i in 0..<matrix1.rows {
|
|
for j in 0..<matrix1.columns{
|
|
sqrMatrix1[i, j] = matrix1[i, j]
|
|
}
|
|
}
|
|
// fill square matrix 2 with values
|
|
for i in 0..<matrix2.rows {
|
|
for j in 0..<matrix2.columns{
|
|
sqrMatrix2[i, j] = matrix2[i, j]
|
|
}
|
|
}
|
|
|
|
// Get strassen result and transfer to array with proper size
|
|
let formulaResult = strassenFormula(matrix1: sqrMatrix1, matrix2: sqrMatrix2)
|
|
var finalResult = Matrix(rows: matrix1.rows, columns: matrix2.columns)
|
|
for i in 0..<finalResult.rows{
|
|
for j in 0..<finalResult.columns {
|
|
finalResult[i, j] = formulaResult[i, j]
|
|
}
|
|
}
|
|
return finalResult
|
|
}
|
|
|
|
// Calculate next power of 2
|
|
func nextPowerOfTwo(num: Int) -> Int {
|
|
// formula for next power of 2
|
|
return Int(pow(2,(ceil(log2(Double(num))))))
|
|
}
|
|
|
|
// Multiply Matrices Using Strassen Formula
|
|
func strassenFormula(matrix1: Matrix, matrix2: Matrix) -> Matrix {
|
|
precondition(matrix1.rows == matrix1.columns && matrix2.rows == matrix2.columns, "Matrices need to be square")
|
|
guard matrix1.rows > 1 && matrix2.rows > 1 else { return matrix1 * matrix2 }
|
|
|
|
let rowHalf = matrix1.rows / 2
|
|
// Strassen Formula https://www.geeksforgeeks.org/easy-way-remember-strassens-matrix-equation/
|
|
// p1 = a(f-h) p2 = (a+b)h
|
|
// p2 = (c+d)e p4 = d(g-e)
|
|
// p5 = (a+d)(e+h) p6 = (b-d)(g+h)
|
|
// p7 = (a-c)(e+f)
|
|
|a b| x |e f| = |(p5+p4-p2+p6) (p1+p2)|
|
|
|c d| |g h| |(p3+p4) (p1+p5-p3-p7)|
|
|
Matrix 1 Matrix 2 Result
|
|
|
|
// create empty matrices for a, b, c, d, e, f, g, h
|
|
var a = Matrix(rows: rowHalf, columns: rowHalf)
|
|
var b = Matrix(rows: rowHalf, columns: rowHalf)
|
|
var c = Matrix(rows: rowHalf, columns: rowHalf)
|
|
var d = Matrix(rows: rowHalf, columns: rowHalf)
|
|
var e = Matrix(rows: rowHalf, columns: rowHalf)
|
|
var f = Matrix(rows: rowHalf, columns: rowHalf)
|
|
var g = Matrix(rows: rowHalf, columns: rowHalf)
|
|
var h = Matrix(rows: rowHalf, columns: rowHalf)
|
|
|
|
// fill the matrices with values
|
|
for i in 0..<rowHalf {
|
|
for j in 0..<rowHalf {
|
|
a[i, j] = matrix1[i, j]
|
|
b[i, j] = matrix1[i, j+rowHalf]
|
|
c[i, j] = matrix1[i+rowHalf, j]
|
|
d[i, j] = matrix1[i+rowHalf, j+rowHalf]
|
|
e[i, j] = matrix2[i, j]
|
|
f[i, j] = matrix2[i, j+rowHalf]
|
|
g[i, j] = matrix2[i+rowHalf, j]
|
|
h[i, j] = matrix2[i+rowHalf, j+rowHalf]
|
|
}
|
|
}
|
|
|
|
// a * (f - h)
|
|
let p1 = strassenFormula(matrix1: a, matrix2: (f - h))
|
|
// (a + b) * h
|
|
let p2 = strassenFormula(matrix1: (a + b), matrix2: h)
|
|
// (c + d) * e
|
|
let p3 = strassenFormula(matrix1: (c + d), matrix2: e)
|
|
// d * (g - e)
|
|
let p4 = strassenFormula(matrix1: d, matrix2: (g - e))
|
|
// (a + d) * (e + h)
|
|
let p5 = strassenFormula(matrix1: (a + d), matrix2: (e + h))
|
|
// (b - d) * (g + h)
|
|
let p6 = strassenFormula(matrix1: (b - d), matrix2: (g + h))
|
|
// (a - c) * (e + f)
|
|
let p7 = strassenFormula(matrix1: (a - c), matrix2: (e + f))
|
|
|
|
// p5 + p4 - p2 + p6
|
|
let result11 = p5 + p4 - p2 + p6
|
|
// p1 + p2
|
|
let result12 = p1 + p2
|
|
// p3 + p4
|
|
let result21 = p3 + p4
|
|
// p1 + p5 - p3 - p7
|
|
let result22 = p1 + p5 - p3 - p7
|
|
|
|
// create an empty matrix for result and fill with values
|
|
var result = Matrix(rows: matrix1.rows, columns: matrix1.rows)
|
|
for i in 0..<rowHalf {
|
|
for j in 0..<rowHalf {
|
|
result[i, j] = result11[i, j]
|
|
result[i, j+rowHalf] = result12[i, j]
|
|
result[i+rowHalf, j] = result21[i, j]
|
|
result[i+rowHalf, j+rowHalf] = result22[i, j]
|
|
}
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
func main(){
|
|
// Matrix Class https://github.com/hollance/Matrix/blob/master/Matrix.swift
|
|
var a = Matrix(rows: 2, columns: 2)
|
|
a[row: 0] = [1, 2]
|
|
a[row: 1] = [3, 4]
|
|
|
|
var b = Matrix(rows: 2, columns: 2)
|
|
b[row: 0] = [5, 6]
|
|
b[row: 1] = [7, 8]
|
|
|
|
var c = Matrix(rows: 4, columns: 4)
|
|
c[row: 0] = [1, 1, 1,1]
|
|
c[row: 1] = [2, 4, 8, 16]
|
|
c[row: 2] = [3, 9, 27, 81]
|
|
c[row: 3] = [4, 16, 64, 256]
|
|
|
|
var d = Matrix(rows: 4, columns: 4)
|
|
d[row: 0] = [4, -3, Double(4/3), Double(-1/4)]
|
|
d[row: 1] = [Double(-13/3), Double(19/4), Double(-7/3), Double(11/24)]
|
|
d[row: 2] = [Double(3/2), Double(-2), Double(7/6), Double(-1/4)]
|
|
d[row: 3] = [Double(-1/6), Double(1/4), Double(-1/6), Double(1/24)]
|
|
|
|
var e = Matrix(rows: 4, columns: 4)
|
|
e[row: 0] = [1, 2, 3, 4]
|
|
e[row: 1] = [5, 6, 7, 8]
|
|
e[row: 2] = [9, 10, 11, 12]
|
|
e[row: 3] = [13, 14, 15, 16]
|
|
|
|
var f = Matrix(rows: 4, columns: 4)
|
|
f[row: 0] = [1, 0, 0, 0]
|
|
f[row: 1] = [0, 1, 0 ,0]
|
|
f[row: 2] = [0 ,0 ,1, 0]
|
|
f[row: 3] = [0, 0 ,0 ,1]
|
|
|
|
let result1 = strassenMultiply(matrix1: a, matrix2: b)
|
|
print("AxB")
|
|
print(result1.description)
|
|
let result2 = strassenMultiply(matrix1: c, matrix2: d)
|
|
print("CxD")
|
|
print(result2.description)
|
|
let result3 = strassenMultiply(matrix1: e, matrix2: f)
|
|
print("ExF")
|
|
print(result3.description)
|
|
}
|
|
main()
|