RosettaCodeData/Task/Square-form-factorization/Java/square-form-factorization.java

109 lines
2.6 KiB
Java

import java.math.BigInteger;
import java.util.List;
import java.util.concurrent.ThreadLocalRandom;
public final class SquareFormFactorization {
public static void main(String[] args) {
ThreadLocalRandom random = ThreadLocalRandom.current();
final long lowerLimit = 10_000_000_000_000_000L;
final List<Long> tests = random.longs(20, lowerLimit, 10 * lowerLimit).boxed().toList();
for ( long test : tests ) {
long factor = squfof(test);
if ( factor == 0 ) {
System.out.println(test + " - failed to factorise");
} else if ( factor == 1 ) {
System.out.println(test + " is a prime number");
} else {
System.out.println(test + " = " + factor + " * " + test / factor);
}
System.out.println();
}
}
private static long squfof(long number) {
if ( BigInteger.valueOf(number).isProbablePrime(15) ) {
return 1; // Prime number
}
final int sqrt = (int) Math.sqrt(number);
if ( sqrt * sqrt == number ) {
return sqrt;
}
testValue = number;
sqrtTestValue = (long) Math.sqrt(testValue);
// Principal form
BQF form = new BQF(0, sqrtTestValue, 1);
form = form.rhoInverse();
// Search principal cycle
for ( int i = 0; i < 4 * (long) Math.sqrt(2 * sqrtTestValue); i += 2 ) {
// Even step
form = form.rho();
long sqrtC = (long) Math.sqrt(form.c);
if ( sqrtC * sqrtC == form.c ) { // Square form found
// Inverse square root
BQF formInverse = new BQF(0, -form.b, sqrtC);
formInverse = formInverse.rhoInverse();
// Search ambiguous cycle
long previousB = 0;
do {
previousB = formInverse.b;
formInverse = formInverse.rho();
} while ( formInverse.b != previousB );
// Symmetry point
final long gcd = gcd(number, formInverse.a);
if ( gcd != 1 ) {
return gcd;
}
}
// Odd step
form = form.rho();
}
if ( number % 2 == 0 ) {
return 2;
}
return 0; // Failed to factorise
}
private static long gcd(long a, long b) {
while ( b != 0 ) {
long temp = a; a = b; b = temp % b;
}
return a;
}
private static class BQF { // Binary quadratic form
public BQF(long aA, long aB, long aC) {
a = aA; b = aB; c = aC;
q = ( sqrtTestValue + b ) / c;
bb = q * c - b;
}
public BQF rho() {
return new BQF(c, bb, a + q * ( b - bb ));
}
public BQF rhoInverse() {
return new BQF(c, bb, ( testValue - bb * bb ) / c);
}
private long a, b, c;
private long q, bb;
}
private static long testValue, sqrtTestValue;
}