RosettaCodeData/Task/N-queens-problem/F-Sharp/n-queens-problem.fs

43 lines
1.1 KiB
Forth

let rec iterate f value = seq {
yield value
yield! iterate f (f value) }
let up i = i + 1
let right i = i
let down i = i - 1
let noCollisionGivenDir solution number dir =
Seq.forall2 (<>) solution (Seq.skip 1 (iterate dir number))
let goodAddition solution number =
List.forall (noCollisionGivenDir solution number) [ up; right; down ]
let rec extendSolution n ps =
[0..n - 1]
|> List.filter (goodAddition ps)
|> List.map (fun num -> num :: ps)
let allSolutions n =
iterate (List.collect (extendSolution n)) [[]]
// Print one solution for the 8x8 case
let printOneSolution () =
allSolutions 8
|> Seq.item 8
|> Seq.head
|> List.iter (fun rowIndex ->
printf "|"
[0..8] |> List.iter (fun i -> printf (if i = rowIndex then "X|" else " |"))
printfn "")
// Print number of solution for the other cases
let printNumberOfSolutions () =
printfn "Size\tNr of solutions"
[1..11]
|> List.map ((fun i -> Seq.item i (allSolutions i)) >> List.length)
|> List.iteri (fun i cnt -> printfn "%d\t%d" (i+1) cnt)
printOneSolution()
printNumberOfSolutions()