RosettaCodeData/Task/Image-convolution/Nim/image-convolution.nim

119 lines
4.5 KiB
Nim

import math, lenientops, strutils
import nimPNG, bitmap, grayscale_image
type ConvolutionFilter = object
kernel: seq[seq[float]]
divisor: float
offset: float
name: string
func convolve[T: Image|GrayImage](img: T; filter: ConvolutionFilter): T =
assert not img.isNil
assert filter.divisor.classify != fcNan and filter.offset.classify != fcNan
assert filter.divisor != 0
assert filter.kernel.len > 0 and filter.kernel[0].len > 0
for row in filter.kernel:
assert row.len == filter.kernel[0].len
assert filter.kernel.len mod 2 == 1
assert filter.kernel[0].len mod 2 == 1
assert img.h >= filter.kernel.len
assert img.w >= filter.kernel[0].len
let knx2 = filter.kernel[0].len div 2
let kny2 = filter.kernel.len div 2
when T is Image:
result = newImage(img.w, img.h)
else:
result = newGrayImage(img.w, img.h)
for y in kny2..<(img.h - kny2):
for x in knx2..<(img.w - knx2):
when T is Image:
var total: array[3, float]
else:
var total: float
for sy, kRow in filter.kernel:
for sx, k in kRow:
let p = img[x + sx - knx2, y + sy - kny2]
when T is Image:
total[0] += p.r * k
total[1] += p.g * k
total[2] += p.b * k
else:
total += p * k
let d = filter.divisor
let off = filter.offset * Luminance.high
when T is Image:
result[x, y] = color(min(max(total[0] / d + off, Luminance.low.float),
Luminance.high.float).toInt,
min(max(total[1] / d + off, Luminance.low.float),
Luminance.high.float).toInt,
min(max(total[2] / d + off, Luminance.low.float),
Luminance.high.float).toInt)
else:
result[x, y] = Luminance(min(max(total / d + off, Luminance.low.float),
Luminance.high.float).toInt)
const
Input = "lena.png"
Output1 = "lena_$1.png"
Output2 = "lena_gray_$1.png"
const Filters = [ConvolutionFilter(kernel: @[@[-2.0, -1.0, 0.0],
@[-1.0, 1.0, 1.0],
@[ 0.0, 1.0, 2.0]],
divisor: 1.0, offset: 0.0, name: "Emboss"),
ConvolutionFilter(kernel: @[@[-1.0, -1.0, -1.0],
@[-1.0, 9.0, -1.0],
@[-1.0, -1.0, -1.0]],
divisor: 1.0, offset: 0.0, name: "Sharpen"),
ConvolutionFilter(kernel: @[@[-1.0, -2.0, -1.0],
@[ 0.0, 0.0, 0.0],
@[ 1.0, 2.0, 1.0]],
divisor: 1.0, offset: 0.5, name: "Sobel_emboss"),
ConvolutionFilter(kernel: @[@[1.0, 1.0, 1.0],
@[1.0, 1.0, 1.0],
@[1.0, 1.0, 1.0]],
divisor: 9.0, offset: 0.0, name: "Box_blur"),
ConvolutionFilter(kernel: @[@[1.0, 4.0, 7.0, 4.0, 1.0],
@[4.0, 16.0, 26.0, 16.0, 4.0],
@[7.0, 26.0, 41.0, 26.0, 7.0],
@[4.0, 16.0, 26.0, 16.0, 4.0],
@[1.0, 4.0, 7.0, 4.0, 1.0]],
divisor: 273.0, offset: 0.0, name: "Gaussian_blur")]
let pngImage = loadPNG24(seq[byte], Input).get()
# Convert to an image managed by the "bitmap" module.
let img = newImage(pngImage.width, pngImage.height)
for i in 0..img.pixels.high:
img.pixels[i] = color(pngImage.data[3 * i],
pngImage.data[3 * i + 1],
pngImage.data[3 * i + 2])
for filter in Filters:
let result = img.convolve(filter)
var data = newSeqOfCap[byte](result.pixels.len * 3)
for color in result.pixels:
data.add([color.r, color.g, color.b])
let output = Output1.format(filter.name)
if savePNG24(output, data, result.w, result.h).isOk:
echo "Saved: ", output
let grayImg = img.toGrayImage()
for filter in Filters:
let result = grayImg.convolve(filter).toImage()
var data = newSeqOfCap[byte](result.pixels.len * 3)
for color in result.pixels:
data.add([color.r, color.g, color.b])
let output = Output2.format(filter.name)
if savePNG24(output, data, result.w, result.h).isOk:
echo "Saved: ", output