RosettaCodeData/Task/Farey-sequence/Python/farey-sequence-2.py

199 lines
4.7 KiB
Python

'''Farey sequence'''
from itertools import (chain, count, islice)
from math import gcd
# farey :: Int -> [Ratio Int]
def farey(n):
'''Farey sequence of order n.'''
return sorted(
nubBy(on(eq)(fromRatio))(
bind(enumFromTo(1)(n))(
lambda k: bind(enumFromTo(0)(k))(
lambda m: [ratio(m)(k)]
)
)
),
key=fromRatio
) + [ratio(1)(1)]
# fareyLength :: Int -> Int
def fareyLength(n):
'''Number of terms in a Farey sequence
of order n.'''
def go(x):
return (x * (x + 3)) // 2 - sum(
go(x // k) for k in enumFromTo(2)(x)
)
return go(n)
# showFarey :: [Ratio Int] -> String
def showFarey(xs):
'''Stringification of a Farey sequence.'''
return '(' + ', '.join(map(showRatio, xs)) + ')'
# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Tests'''
print(
fTable(
'Farey sequence for orders 1-11 (inclusive):\n'
)(str)(showFarey)(
farey
)(enumFromTo(1)(11))
)
print(
fTable(
'\n\nNumber of fractions in the Farey sequence ' +
'for order 100 through 1,000 (inclusive) by hundreds:\n'
)(str)(str)(
fareyLength
)(enumFromThenTo(100)(200)(1000))
)
# GENERIC -------------------------------------------------
# bind(>>=) :: [a] -> (a -> [b]) -> [b]
def bind(xs):
'''List monad injection operator.
Two computations sequentially composed,
with any value produced by the first
passed as an argument to the second.'''
return lambda f: list(
chain.from_iterable(
map(f, xs)
)
)
# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
'''Right to left function composition.'''
return lambda f: lambda x: g(f(x))
# enumFromThenTo :: Int -> Int -> Int -> [Int]
def enumFromThenTo(m):
'''Integer values enumerated from m to n
with a step defined by nxt-m.
'''
def go(nxt, n):
d = nxt - m
return islice(count(0), m, d + n, d)
return lambda nxt: lambda n: (
list(go(nxt, n))
)
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))
# eq (==) :: Eq a => a -> a -> Bool
def eq(a):
'''Simple equality of a and b.'''
return lambda b: a == b
# fromRatio :: Ratio Int -> Float
def fromRatio(r):
'''A floating point value derived from a
a rational value.
'''
return r.get('numerator') / r.get('denominator')
# nubBy :: (a -> a -> Bool) -> [a] -> [a]
def nubBy(p):
'''A sublist of xs from which all duplicates,
(as defined by the equality predicate p)
are excluded.
'''
def go(xs):
if not xs:
return []
x = xs[0]
return [x] + go(
list(filter(
lambda y: not p(x)(y),
xs[1:]
))
)
return lambda xs: go(xs)
# on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
def on(f):
'''A function returning the value of applying
the binary f to g(a) g(b)
'''
return lambda g: lambda a: lambda b: f(g(a))(g(b))
# ratio :: Int -> Int -> Ratio Int
def ratio(n):
'''Rational value constructed
from a numerator and a denominator.
'''
def go(n, d):
g = gcd(n, d)
return {
'type': 'Ratio',
'numerator': n // g, 'denominator': d // g
}
return lambda d: go(n * signum(d), abs(d))
# showRatio :: Ratio -> String
def showRatio(r):
'''String representation of the ratio r.'''
d = r.get('denominator')
return str(r.get('numerator')) + (
'/' + str(d) if 1 != d else ''
)
# signum :: Num -> Num
def signum(n):
'''The sign of n.'''
return -1 if 0 > n else (1 if 0 < n else 0)
# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
'''Heading -> x display function -> fx display function ->
f -> xs -> tabular string.
'''
def go(xShow, fxShow, f, xs):
ys = [xShow(x) for x in xs]
w = max(map(len, ys))
return s + '\n' + '\n'.join(map(
lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
xs, ys
))
return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
xShow, fxShow, f, xs
)
# unlines :: [String] -> String
def unlines(xs):
'''A single string derived by the intercalation
of a list of strings with the newline character.
'''
return '\n'.join(xs)
if __name__ == '__main__':
main()