RosettaCodeData/Task/Euler-method/Pascal/euler-method.pas

50 lines
1.0 KiB
ObjectPascal

{$mode delphi}
PROGRAM Euler;
TYPE TNewtonCooling = FUNCTION (t: REAL) : REAL;
CONST T0 : REAL = 100.0;
CONST TR : REAL = 20.0;
CONST k : REAL = 0.07;
CONST time : INTEGER = 100;
CONST step : INTEGER = 10;
CONST dt : ARRAY[0..3] of REAL = (1.0,2.0,5.0,10.0);
VAR i : INTEGER;
FUNCTION NewtonCooling(t: REAL) : REAL;
BEGIN
NewtonCooling := -k * (t-TR);
END;
PROCEDURE Euler(F: TNewtonCooling; y, h : REAL; n: INTEGER);
VAR i: INTEGER = 0;
BEGIN
WRITE('dt=',trunc(h):2,':');
REPEAT
IF (i mod 10 = 0) THEN WRITE(' ',y:2:3);
INC(i,trunc(h));
y := y + h * F(y);
UNTIL (i >= n);
WRITELN;
END;
PROCEDURE Sigma;
VAR t: INTEGER = 0;
BEGIN
WRITE('Sigma:');
REPEAT
WRITE(' ',(20 + 80 * exp(-0.07 * t)):2:3);
INC(t,step);
UNTIL (t>=time);
WRITELN;
END;
BEGIN
WRITELN('Newton cooling function: Analytic solution (Sigma) with 3 Euler approximations.');
WRITELN('Time: ',0:7,10:7,20:7,30:7,40:7,50:7,60:7,70:7,80:7,90:7);
Sigma;
FOR i := 1 to 3 DO
Euler(NewtonCooling,T0,dt[i],time);
END.