RosettaCodeData/Task/De-Bruijn-sequences/Python/de-bruijn-sequences.py

92 lines
2.2 KiB
Python

# from https://en.wikipedia.org/wiki/De_Bruijn_sequence
def de_bruijn(k, n):
"""
de Bruijn sequence for alphabet k
and subsequences of length n.
"""
try:
# let's see if k can be cast to an integer;
# if so, make our alphabet a list
_ = int(k)
alphabet = list(map(str, range(k)))
except (ValueError, TypeError):
alphabet = k
k = len(k)
a = [0] * k * n
sequence = []
def db(t, p):
if t > n:
if n % p == 0:
sequence.extend(a[1:p + 1])
else:
a[t] = a[t - p]
db(t + 1, p)
for j in range(a[t - p] + 1, k):
a[t] = j
db(t + 1, t)
db(1, 1)
return "".join(alphabet[i] for i in sequence)
def validate(db):
"""
Check that all 10,000 combinations of 0-9 are present in
De Bruijn string db.
Validating the reversed deBruijn sequence:
No errors found
Validating the overlaid deBruijn sequence:
4 errors found:
PIN number 1459 missing
PIN number 4591 missing
PIN number 5814 missing
PIN number 8145 missing
"""
dbwithwrap = db+db[0:3]
digits = '0123456789'
errorstrings = []
for d1 in digits:
for d2 in digits:
for d3 in digits:
for d4 in digits:
teststring = d1+d2+d3+d4
if teststring not in dbwithwrap:
errorstrings.append(teststring)
if len(errorstrings) > 0:
print(" "+str(len(errorstrings))+" errors found:")
for e in errorstrings:
print(" PIN number "+e+" missing")
else:
print(" No errors found")
db = de_bruijn(10, 4)
print(" ")
print("The length of the de Bruijn sequence is ", str(len(db)))
print(" ")
print("The first 130 digits of the de Bruijn sequence are: "+db[0:130])
print(" ")
print("The last 130 digits of the de Bruijn sequence are: "+db[-130:])
print(" ")
print("Validating the deBruijn sequence:")
validate(db)
dbreversed = db[::-1]
print(" ")
print("Validating the reversed deBruijn sequence:")
validate(dbreversed)
dboverlaid = db[0:4443]+'.'+db[4444:]
print(" ")
print("Validating the overlaid deBruijn sequence:")
validate(dboverlaid)