RosettaCodeData/Task/Cyclops-numbers/Python/cyclops-numbers.py

80 lines
2.3 KiB
Python

from sympy import isprime
def print50(a, width=8):
for i, n in enumerate(a):
print(f'{n: {width},}', end='\n' if (i + 1) % 10 == 0 else '')
def generate_cyclops(maxdig=9):
yield 0
for d in range((maxdig + 1) // 2):
arr = [str(i) for i in range(10**d, 10**(d+1)) if not('0' in str(i))]
for left in arr:
for right in arr:
yield int(left + '0' + right)
def generate_prime_cyclops():
for c in generate_cyclops():
if isprime(c):
yield c
def generate_blind_prime_cyclops():
for c in generate_prime_cyclops():
cstr = str(c)
mid = len(cstr) // 2
if isprime(int(cstr[:mid] + cstr[mid+1:])):
yield c
def generate_palindromic_cyclops(maxdig=9):
for d in range((maxdig + 1) // 2):
arr = [str(i) for i in range(10**d, 10**(d+1)) if not('0' in str(i))]
for s in arr:
yield int(s + '0' + s[::-1])
def generate_palindromic_prime_cyclops():
for c in generate_palindromic_cyclops():
if isprime(c):
yield c
print('The first 50 cyclops numbers are:')
gen = generate_cyclops()
print50([next(gen) for _ in range(50)])
for i, c in enumerate(generate_cyclops()):
if c > 10000000:
print(
f'\nThe next cyclops number after 10,000,000 is {c} at position {i:,}.')
break
print('\nThe first 50 prime cyclops numbers are:')
gen = generate_prime_cyclops()
print50([next(gen) for _ in range(50)])
for i, c in enumerate(generate_prime_cyclops()):
if c > 10000000:
print(
f'\nThe next prime cyclops number after 10,000,000 is {c} at position {i:,}.')
break
print('\nThe first 50 blind prime cyclops numbers are:')
gen = generate_blind_prime_cyclops()
print50([next(gen) for _ in range(50)])
for i, c in enumerate(generate_blind_prime_cyclops()):
if c > 10000000:
print(
f'\nThe next blind prime cyclops number after 10,000,000 is {c} at position {i:,}.')
break
print('\nThe first 50 palindromic prime cyclops numbers are:')
gen = generate_palindromic_prime_cyclops()
print50([next(gen) for _ in range(50)], 11)
for i, c in enumerate(generate_palindromic_prime_cyclops()):
if c > 10000000:
print(
f'\nThe next palindromic prime cyclops number after 10,000,000 is {c} at position {i}.')
break