RosettaCodeData/Task/Circular-primes/Python/circular-primes.py

113 lines
2.6 KiB
Python

import random
def is_Prime(n):
"""
Miller-Rabin primality test.
A return value of False means n is certainly not prime. A return value of
True means n is very likely a prime.
"""
if n!=int(n):
return False
n=int(n)
#Miller-Rabin test for prime
if n==0 or n==1 or n==4 or n==6 or n==8 or n==9:
return False
if n==2 or n==3 or n==5 or n==7:
return True
s = 0
d = n-1
while d%2==0:
d>>=1
s+=1
assert(2**s * d == n-1)
def trial_composite(a):
if pow(a, d, n) == 1:
return False
for i in range(s):
if pow(a, 2**i * d, n) == n-1:
return False
return True
for i in range(8):#number of trials
a = random.randrange(2, n)
if trial_composite(a):
return False
return True
def isPrime(n: int) -> bool:
'''
https://www.geeksforgeeks.org/python-program-to-check-whether-a-number-is-prime-or-not/
'''
# Corner cases
if (n <= 1) :
return False
if (n <= 3) :
return True
# This is checked so that we can skip
# middle five numbers in below loop
if (n % 2 == 0 or n % 3 == 0) :
return False
i = 5
while(i * i <= n) :
if (n % i == 0 or n % (i + 2) == 0) :
return False
i = i + 6
return True
def rotations(n: int)-> set((int,)):
'''
>>> {123, 231, 312} == rotations(123)
True
'''
a = str(n)
return set(int(a[i:] + a[:i]) for i in range(len(a)))
def isCircular(n: int) -> bool:
'''
>>> [isCircular(n) for n in (11, 31, 47,)]
[True, True, False]
'''
return all(isPrime(int(o)) for o in rotations(n))
from itertools import product
def main():
result = [2, 3, 5, 7]
first = '137'
latter = '1379'
for i in range(1, 6):
s = set(int(''.join(a)) for a in product(first, *((latter,) * i)))
while s:
a = s.pop()
b = rotations(a)
if isCircular(a):
result.append(min(b))
s -= b
result.sort()
return result
assert [2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933] == main()
repunit = lambda n: int('1' * n)
def repmain(n: int) -> list:
'''
returns the first n repunit primes, probably.
'''
result = []
i = 2
while len(result) < n:
if is_Prime(repunit(i)):
result.append(i)
i += 1
return result
assert [2, 19, 23, 317, 1031] == repmain(5)
# because this Miller-Rabin test is already on rosettacode there's no good reason to test the longer repunits.