RosettaCodeData/Task/Arithmetic-Complex/REXX/arithmetic-complex.rexx

24 lines
2.0 KiB
Rexx

/*REXX program demonstrates how to support some math functions for complex numbers. */
x = '(5,3i)' /*define X ─── can use I i J or j */
y = "( .5, 6j)" /*define Y " " " " " " " */
say ' addition: ' x " + " y ' = ' Cadd(x, y)
say ' subtraction: ' x " - " y ' = ' Csub(x, y)
say 'multiplication: ' x " * " y ' = ' Cmul(x, y)
say ' division: ' x " ÷ " y ' = ' Cdiv(x, y)
say ' inverse: ' x " = " Cinv(x, y)
say ' conjugate of: ' x " = " Conj(x, y)
say ' negation of: ' x " = " Cneg(x, y)
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
Conj: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a , -b )
Cadd: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a+c , b+d )
Csub: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a-c , b-d )
Cmul: procedure; parse arg a ',' b,c ',' d; call C#; return C$( ac-bd , bc+ad)
Cdiv: procedure; parse arg a ',' b,c ',' d; call C#; return C$((ac+bd)/s, (bc-ad)/s)
Cinv: return Cdiv(1, arg(1))
Cneg: return Cmul(arg(1), -1)
C_: return word(translate(arg(1), , '{[(JjIi)]}') 0, 1) /*get # or 0*/
C#: a=C_(a); b=C_(b); c=C_(c); d=C_(d); ac=a*c; ad=a*d; bc=b*c; bd=b*d;s=c*c+d*d; return
C$: parse arg r,c; _='['r; if c\=0 then _=_","c'j'; return _"]" /*uses j */