24 lines
2.0 KiB
Rexx
24 lines
2.0 KiB
Rexx
/*REXX program demonstrates how to support some math functions for complex numbers. */
|
|
x = '(5,3i)' /*define X ─── can use I i J or j */
|
|
y = "( .5, 6j)" /*define Y " " " " " " " */
|
|
|
|
say ' addition: ' x " + " y ' = ' Cadd(x, y)
|
|
say ' subtraction: ' x " - " y ' = ' Csub(x, y)
|
|
say 'multiplication: ' x " * " y ' = ' Cmul(x, y)
|
|
say ' division: ' x " ÷ " y ' = ' Cdiv(x, y)
|
|
say ' inverse: ' x " = " Cinv(x, y)
|
|
say ' conjugate of: ' x " = " Conj(x, y)
|
|
say ' negation of: ' x " = " Cneg(x, y)
|
|
exit /*stick a fork in it, we're all done. */
|
|
/*──────────────────────────────────────────────────────────────────────────────────────*/
|
|
Conj: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a , -b )
|
|
Cadd: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a+c , b+d )
|
|
Csub: procedure; parse arg a ',' b,c ',' d; call C#; return C$( a-c , b-d )
|
|
Cmul: procedure; parse arg a ',' b,c ',' d; call C#; return C$( ac-bd , bc+ad)
|
|
Cdiv: procedure; parse arg a ',' b,c ',' d; call C#; return C$((ac+bd)/s, (bc-ad)/s)
|
|
Cinv: return Cdiv(1, arg(1))
|
|
Cneg: return Cmul(arg(1), -1)
|
|
C_: return word(translate(arg(1), , '{[(JjIi)]}') 0, 1) /*get # or 0*/
|
|
C#: a=C_(a); b=C_(b); c=C_(c); d=C_(d); ac=a*c; ad=a*d; bc=b*c; bd=b*d;s=c*c+d*d; return
|
|
C$: parse arg r,c; _='['r; if c\=0 then _=_","c'j'; return _"]" /*uses j */
|