RosettaCodeData/Task/Arithmetic-Complex/C-sharp/arithmetic-complex-2.cs

206 lines
4.8 KiB
C#

using System;
public struct ComplexNumber
{
public static readonly ComplexNumber i = new ComplexNumber(0.0, 1.0);
public static readonly ComplexNumber Zero = new ComplexNumber(0.0, 0.0);
public double Re;
public double Im;
public ComplexNumber(double re)
{
this.Re = re;
this.Im = 0;
}
public ComplexNumber(double re, double im)
{
this.Re = re;
this.Im = im;
}
public static ComplexNumber operator *(ComplexNumber n1, ComplexNumber n2)
{
return new ComplexNumber(n1.Re * n2.Re - n1.Im * n2.Im,
n1.Im * n2.Re + n1.Re * n2.Im);
}
public static ComplexNumber operator *(double n1, ComplexNumber n2)
{
return new ComplexNumber(n1 * n2.Re, n1 * n2.Im);
}
public static ComplexNumber operator /(ComplexNumber n1, ComplexNumber n2)
{
double n2Norm = n2.Re * n2.Re + n2.Im * n2.Im;
return new ComplexNumber((n1.Re * n2.Re + n1.Im * n2.Im) / n2Norm,
(n1.Im * n2.Re - n1.Re * n2.Im) / n2Norm);
}
public static ComplexNumber operator /(ComplexNumber n1, double n2)
{
return new ComplexNumber(n1.Re / n2, n1.Im / n2);
}
public static ComplexNumber operator +(ComplexNumber n1, ComplexNumber n2)
{
return new ComplexNumber(n1.Re + n2.Re, n1.Im + n2.Im);
}
public static ComplexNumber operator -(ComplexNumber n1, ComplexNumber n2)
{
return new ComplexNumber(n1.Re - n2.Re, n1.Im - n2.Im);
}
public static ComplexNumber operator -(ComplexNumber n)
{
return new ComplexNumber(-n.Re, -n.Im);
}
public static implicit operator ComplexNumber(double n)
{
return new ComplexNumber(n, 0.0);
}
public static explicit operator double(ComplexNumber n)
{
return n.Re;
}
public static bool operator ==(ComplexNumber n1, ComplexNumber n2)
{
return n1.Re == n2.Re && n1.Im == n2.Im;
}
public static bool operator !=(ComplexNumber n1, ComplexNumber n2)
{
return n1.Re != n2.Re || n1.Im != n2.Im;
}
public override bool Equals(object obj)
{
return this == (ComplexNumber)obj;
}
public override int GetHashCode()
{
return Re.GetHashCode() ^ Im.GetHashCode();
}
public override string ToString()
{
return String.Format("{0}+{1}*i", Re, Im);
}
}
public static class ComplexMath
{
public static double Abs(ComplexNumber a)
{
return Math.Sqrt(Norm(a));
}
public static double Norm(ComplexNumber a)
{
return a.Re * a.Re + a.Im * a.Im;
}
public static double Arg(ComplexNumber a)
{
return Math.Atan2(a.Im, a.Re);
}
public static ComplexNumber Inverse(ComplexNumber a)
{
double norm = Norm(a);
return new ComplexNumber(a.Re / norm, -a.Im / norm);
}
public static ComplexNumber Conjugate(ComplexNumber a)
{
return new ComplexNumber(a.Re, -a.Im);
}
public static ComplexNumber Exp(ComplexNumber a)
{
double e = Math.Exp(a.Re);
return new ComplexNumber(e * Math.Cos(a.Im), e * Math.Sin(a.Im));
}
public static ComplexNumber Log(ComplexNumber a)
{
return new ComplexNumber(0.5 * Math.Log(Norm(a)), Arg(a));
}
public static ComplexNumber Power(ComplexNumber a, ComplexNumber power)
{
return Exp(power * Log(a));
}
public static ComplexNumber Power(ComplexNumber a, int power)
{
bool inverse = false;
if (power < 0)
{
inverse = true; power = -power;
}
ComplexNumber result = 1.0;
ComplexNumber multiplier = a;
while (power > 0)
{
if ((power & 1) != 0) result *= multiplier;
multiplier *= multiplier;
power >>= 1;
}
if (inverse)
return Inverse(result);
else
return result;
}
public static ComplexNumber Sqrt(ComplexNumber a)
{
return Exp(0.5 * Log(a));
}
public static ComplexNumber Sin(ComplexNumber a)
{
return Sinh(ComplexNumber.i * a) / ComplexNumber.i;
}
public static ComplexNumber Cos(ComplexNumber a)
{
return Cosh(ComplexNumber.i * a);
}
public static ComplexNumber Sinh(ComplexNumber a)
{
return 0.5 * (Exp(a) - Exp(-a));
}
public static ComplexNumber Cosh(ComplexNumber a)
{
return 0.5 * (Exp(a) + Exp(-a));
}
}
class Program
{
static void Main(string[] args)
{
// usage
ComplexNumber i = 2;
ComplexNumber j = new ComplexNumber(1, -2);
Console.WriteLine(i * j);
Console.WriteLine(ComplexMath.Power(j, 2));
Console.WriteLine((double)ComplexMath.Sin(i) + " vs " + Math.Sin(2));
Console.WriteLine(ComplexMath.Power(j, 0) == 1.0);
}
}