RosettaCodeData/Task/Stern-Brocot-sequence/Go/stern-brocot-sequence-2.go

75 lines
2.1 KiB
Go

// SB implements the Stern-Brocot sequence.
//
// Generator() satisfies RC Task 1. For remaining tasks, Generator could be
// used but FirstN(), and Find() are simpler methods for specific stopping
// criteria. FirstN and Find might also be considered to satisfy Task 1,
// in which case Generator would not really be needed. Anyway, there it is.
package sb
// Seq represents an even number of terms of a Stern-Brocot sequence.
//
// Terms are stored in a slice. Terms start with 1.
// (Specifically, the zeroth term, 0, given in OEIS A002487 is not represented.)
// Term 1 (== 1) is stored at slice index 0.
//
// Methods on Seq rely on Seq always containing an even number of terms.
type Seq []int
// New returns a Seq with the two base terms.
func New() *Seq {
return &Seq{1, 1} // Step 1 of the RC task.
}
// TwoMore appends two more terms to p.
// It's the body of the loop in the RC algorithm.
// Generate(), FirstN(), and Find() wrap this body in different ways.
func (p *Seq) TwoMore() {
s := *p
n := len(s) / 2 // Steps 2 and 5 of the RC task.
c := s[n]
*p = append(s, c+s[n-1], c) // Steps 3 and 4 of the RC task.
}
// Generator returns a generator function that returns successive terms
// (until overflow.)
func Generator() func() int {
n := 0
p := New()
return func() int {
if len(*p) == n {
p.TwoMore()
}
t := (*p)[n]
n++
return t
}
}
// FirstN lazily extends p as needed so that it has at least n terms.
// FirstN then returns a list of the first n terms.
func (p *Seq) FirstN(n int) []int {
for len(*p) < n {
p.TwoMore()
}
return []int((*p)[:n])
}
// Find lazily extends p as needed until it contains the value x
// Find then returns the slice index of x in p.
func (p *Seq) Find(x int) int {
for n, f := range *p {
if f == x {
return n
}
}
for {
p.TwoMore()
switch x {
case (*p)[len(*p)-2]:
return len(*p) - 2
case (*p)[len(*p)-1]:
return len(*p) - 1
}
}
}