RosettaCodeData/Task/Sierpinski-triangle-Graphical/Python/sierpinski-triangle-graphic...

61 lines
1.9 KiB
Python

##########################################################################################
# The drawing function
# --------------------
#
# level level of Sierpinski triangle (minimum value = 1)
# ss screensize (Draws on a screen of size ss x ss. Default value = 400.)
#-----------------------------------------------------------------------------------------
def DrawSierpinskiTriangle(level, ss=400):
# typical values
turn = 0 # initial turn (0 to start horizontally)
angle=60.0 # in degrees
# Initialize the turtle
turtle.hideturtle()
turtle.screensize(ss,ss)
turtle.penup()
turtle.degrees()
# The starting point on the canvas
fwd0 = float(ss)
point=array([-fwd0/2.0, -fwd0/2.0])
# Setting up the Lindenmayer system
# Assuming that the triangle will be drawn in the following way:
# 1.) Start at a point
# 2.) Draw a straight line - the horizontal line (H)
# 3.) Bend twice by 60 degrees to the left (--)
# 4.) Draw a straight line - the slanted line (X)
# 5.) Bend twice by 60 degrees to the left (--)
# 6.) Draw a straight line - another slanted line (X)
# This produces the triangle in the first level. (so the axiom to begin with is H--X--X)
# 7.) For the next level replace each horizontal line using
# X->XX
# H -> H--X++H++X--H
# The lengths will be halved.
decode = {'-':Left, '+':Right, 'X':Forward, 'H':Forward}
axiom = 'H--X--X'
# Start the drawing
turtle.goto(point[0], point[1])
turtle.pendown()
turtle.hideturtle()
turt=turtle.getpen()
startposition=turt.clone()
# Get the triangle in the Lindenmayer system
fwd = fwd0/(2.0**level)
path = axiom
for i in range(0,level):
path=path.replace('X','XX')
path=path.replace('H','H--X++H++X--H')
# Draw it.
for i in path:
[turn, point, fwd, angle, turt]=decode[i](turn, point, fwd, angle, turt)
##########################################################################################
DrawSierpinskiTriangle(5)