RosettaCodeData/Task/Numerical-integration/PL-I/numerical-integration.pli

72 lines
2.1 KiB
Plaintext

integrals: procedure options (main); /* 1 September 2019 */
f: procedure (x, function) returns (float(18));
declare x float(18), function fixed binary;
select (function);
when (1) return (x**3);
when (2) return (1/x);
when (3) return (x);
when (4) return (x);
end;
end f;
declare (a, b) fixed decimal (10);
declare (rect_area, trap_area, Simpson) float(18);
declare (d, dx) float(18);
declare (S1, S2) float(18);
declare N fixed decimal (15), function fixed binary;
declare k fixed decimal (7,2);
put (' Rectangle-left Rectangle-mid Rectangle-right' ||
' Trapezoid Simpson');
do function = 1 to 4;
select(function);
when (1) do; N = 100; a = 0; b = 1; end;
when (2) do; N = 1000; a = 1; b = 100; end;
when (3) do; N = 5000000; a = 0; b = 5000; end;
when (4) do; N = 6000000; a = 0; b = 6000; end;
end;
dx = (b-a)/float(N);
/* Rectangle method, left-side */
rect_area = 0;
do d = 0 to N-1;
rect_area = rect_area + dx*f(a + d*dx, function);
end;
put skip edit (rect_area) (E(25, 15));
/* Rectangle method, mid-point */
rect_area = 0;
do d = 0 to N-1;
rect_area = rect_area + dx*f(a + d*dx + dx/2, function);
end;
put edit (rect_area) (E(25, 15));
/* Rectangle method, right-side */
rect_area = 0;
do d = 1 to N;
rect_area = rect_area + dx*f(a + d*dx, function);
end;
put edit (rect_area) (E(25, 15));
/* Trapezoid method */
trap_area = 0;
do d = 0 to N-1;
trap_area = trap_area + dx*(f(a+d*dx, function) + f(a+(d+1)*dx, function))/2;
end;
put edit (trap_area) (X(1), E(25, 15));
/* Simpson's Rule */
S1 = f(a+dx/2, function);
S2 = 0;
do d = 1 to N-1;
S1 = S1 + f(a+d*dx+dx/2, function);
S2 = S2 + f(a+d*dx, function);
end;
Simpson = dx * (f(a, function) + f(b, function) + 4*S1 + 2*S2) / 6;
put edit (Simpson) (X(1), E(25, 15));
end;
end integrals;