RosettaCodeData/Task/Numerical-integration/Go/numerical-integration.go

165 lines
4.3 KiB
Go

package main
import (
"fmt"
"math"
)
// specification for an integration
type spec struct {
lower, upper float64 // bounds for integration
n int // number of parts
exact float64 // expected answer
fs string // mathematical description of function
f func(float64) float64 // function to integrate
}
// test cases per task description
var data = []spec{
spec{0, 1, 100, .25, "x^3", func(x float64) float64 { return x * x * x }},
spec{1, 100, 1000, float64(math.Log(100)), "1/x",
func(x float64) float64 { return 1 / x }},
spec{0, 5000, 5e5, 12.5e6, "x", func(x float64) float64 { return x }},
spec{0, 6000, 6e6, 18e6, "x", func(x float64) float64 { return x }},
}
// object for associating a printable function name with an integration method
type method struct {
name string
integrate func(spec) float64
}
// integration methods implemented per task description
var methods = []method{
method{"Rectangular (left) ", rectLeft},
method{"Rectangular (right) ", rectRight},
method{"Rectangular (midpoint)", rectMid},
method{"Trapezium ", trap},
method{"Simpson's ", simpson},
}
func rectLeft(t spec) float64 {
var a adder
r := t.upper - t.lower
nf := float64(t.n)
x0 := t.lower
for i := 0; i < t.n; i++ {
x1 := t.lower + float64(i+1)*r/nf
// x1-x0 better than r/nf.
// (with r/nf, the represenation error accumulates)
a.add(t.f(x0) * (x1 - x0))
x0 = x1
}
return a.total()
}
func rectRight(t spec) float64 {
var a adder
r := t.upper - t.lower
nf := float64(t.n)
x0 := t.lower
for i := 0; i < t.n; i++ {
x1 := t.lower + float64(i+1)*r/nf
a.add(t.f(x1) * (x1 - x0))
x0 = x1
}
return a.total()
}
func rectMid(t spec) float64 {
var a adder
r := t.upper - t.lower
nf := float64(t.n)
// there's a tiny gloss in the x1-x0 trick here. the correct way
// would be to compute x's at division boundaries, but we don't need
// those x's for anything else. (the function is evaluated on x's
// at division midpoints rather than division boundaries.) so, we
// reuse the midpoint x's, knowing that they will average out just
// as well. we just need one extra point, so we use lower-.5.
x0 := t.lower - .5*r/nf
for i := 0; i < t.n; i++ {
x1 := t.lower + (float64(i)+.5)*r/nf
a.add(t.f(x1) * (x1 - x0))
x0 = x1
}
return a.total()
}
func trap(t spec) float64 {
var a adder
r := t.upper - t.lower
nf := float64(t.n)
x0 := t.lower
f0 := t.f(x0)
for i := 0; i < t.n; i++ {
x1 := t.lower + float64(i+1)*r/nf
f1 := t.f(x1)
a.add((f0 + f1) * .5 * (x1 - x0))
x0, f0 = x1, f1
}
return a.total()
}
func simpson(t spec) float64 {
var a adder
r := t.upper - t.lower
nf := float64(t.n)
// similar to the rectangle midpoint logic explained above,
// we play a little loose with the values used for dx and dx0.
dx0 := r / nf
a.add(t.f(t.lower) * dx0)
a.add(t.f(t.lower+dx0*.5) * dx0 * 4)
x0 := t.lower + dx0
for i := 1; i < t.n; i++ {
x1 := t.lower + float64(i+1)*r/nf
xmid := (x0 + x1) * .5
dx := x1 - x0
a.add(t.f(x0) * dx * 2)
a.add(t.f(xmid) * dx * 4)
x0 = x1
}
a.add(t.f(t.upper) * dx0)
return a.total() / 6
}
func sum(v []float64) float64 {
var a adder
for _, e := range v {
a.add(e)
}
return a.total()
}
type adder struct {
sum, e float64
}
func (a *adder) total() float64 {
return a.sum + a.e
}
func (a *adder) add(x float64) {
sum := a.sum + x
e := sum - a.sum
a.e += a.sum - (sum - e) + (x - e)
a.sum = sum
}
func main() {
for _, t := range data {
fmt.Println("Test case: f(x) =", t.fs)
fmt.Println("Integration from", t.lower, "to", t.upper,
"in", t.n, "parts")
fmt.Printf("Exact result %.7e Error\n", t.exact)
for _, m := range methods {
a := m.integrate(t)
e := a - t.exact
if e < 0 {
e = -e
}
fmt.Printf("%s %.7e %.7e\n", m.name, a, e)
}
fmt.Println("")
}
}