RosettaCodeData/Task/N-queens-problem/Fortran/n-queens-problem-4.f

123 lines
2.5 KiB
Fortran

program queens
use omp_lib
implicit none
integer, parameter :: long = selected_int_kind(17)
integer, parameter :: l = 18
integer :: n, i, j, a(l*l, 2), k, p, q
integer(long) :: s, b(l*l)
real(kind(1d0)) :: t1, t2
do n = 6, l
k = 0
p = n/2
q = mod(n, 2)*(p + 1)
do i = 1, n
do j = 1, n
if ((abs(i - j) > 1) .and. ((i <= p) .or. ((i == q) .and. (j < i)))) then
k = k + 1
a(k, 1) = i
a(k, 2) = j
end if
end do
end do
s = 0
t1 = omp_get_wtime()
!$omp parallel do schedule(dynamic)
do i = 1, k
b(i) = pqueens(n, a(i, 1), a(i, 2))
end do
!$omp end parallel do
t2 = omp_get_wtime()
print "(I4, I12, F12.3)", n, 2*sum(b(1:k)), t2 - t1
end do
contains
function pqueens(n, k1, k2) result(m)
implicit none
integer(long) :: m
integer, intent(in) :: n, k1, k2
integer, parameter :: l = 20
integer :: a(l), s(l), u(4*l - 2)
integer :: i, j, y, z, p, q, r
do i = 1, n
a(i) = i
end do
do i = 1, 4*n - 2
u(i) = 0
end do
m = 0
r = 2*n - 1
if (k1 == k2) return
p = 1 - k1 + n
q = 1 + k1 - 1
if ((u(p) /= 0) .or. (u(q + r) /= 0)) return
u(p) = 1
u(q + r) = 1
z = a(1)
a(1) = a(k1)
a(k1) = z
p = 2 - k2 + n
q = 2 + k2 - 1
if ((u(p) /= 0) .or. (u(q + r) /= 0)) return
u(p) = 1
u(q + r) = 1
if (k2 /= 1) then
z = a(2)
a(2) = a(k2)
a(k2) = z
else
z = a(2)
a(2) = a(k1)
a(k1) = z
end if
i = 3
go to 40
30 s(i) = j
u(p) = 1
u(q + r) = 1
i = i + 1
40 if (i > n) go to 80
j = i
50 z = a(i)
y = a(j)
p = i - y + n
q = i + y - 1
a(i) = y
a(j) = z
if ((u(p) == 0) .and. (u(q + r) == 0)) go to 30
60 j = j + 1
if (j <= n) go to 50
70 j = j - 1
if (j == i) go to 90
z = a(i)
a(i) = a(j)
a(j) = z
go to 70
!valid queens position found
80 m = m + 1
90 i = i - 1
if (i == 2) return
p = i - a(i) + n
q = i + a(i) - 1
j = s(i)
u(p) = 0
u(q + r) = 0
go to 60
end function
end program