RosettaCodeData/Task/N-queens-problem/D/n-queens-problem-3.d

91 lines
2.9 KiB
D

ulong nQueens(in uint nn) pure nothrow @nogc @safe
in {
assert(nn > 0 && nn <= 27,
"'side' value must be in 1 .. 27.");
} body {
if (nn < 4)
return nn == 1;
enum uint ulen = uint.sizeof * 8;
immutable uint full = uint.max - ((1 << (ulen - nn)) - 1);
immutable n = nn - 3;
typeof(return) count;
uint[32] l=void, r=void, c=void;
uint[33] mm; // mm and mmi are a stack.
// Require second queen to be left of the first queen, so
// we ever only test half of the possible solutions. This
// is why we can't handle n=1 here.
for (uint b0 = 1U << (ulen - n - 3); b0; b0 <<= 1) {
for (uint b1 = b0 << 2; b1; b1 <<= 1) {
uint d = n;
// c: columns occupied by previous queens.
c[n] = b0 | b1;
// l: columns attacked by left diagonals.
l[n] = (b0 << 2) | (b1 << 1);
// r: by right diagnoals.
r[n] = (b0 >> 2) | (b1 >> 1);
// Availabe columns on current row.
uint bits = full & ~(l[n] | r[n] | c[n]);
uint mmi = 1;
mm[mmi] = bits;
while (bits) {
// d: depth, aka row. counting backwards.
// Because !d is often faster than d != n.
while (d) {
// immutable uint pos = 1U << bits.bsf; // Slower.
immutable uint pos = -int(bits) & bits;
// Mark bit used. Only put current bits on
// stack if not zero, so backtracking will
// skip exhausted rows (because reading stack
// variable is slow compared to registers).
bits &= ~pos;
if (bits) {
mm[mmi] = bits | d;
mmi++;
}
d--;
l[d] = (l[d + 1] | pos) << 1;
r[d] = (r[d + 1] | pos) >> 1;
c[d] = c[d + 1] | pos;
bits = full & ~(l[d] | r[d] | c[d]);
if (!bits)
break;
if (!d) {
count++;
break;
}
}
// Bottom of stack m is a zero'd field acting as
// sentinel. When saving to stack, left 27 bits
// are the available columns, while right 5 bits
// is the depth. Hence solution is limited to size
// 27 board -- not that it matters in foreseeable
// future.
mmi--;
bits = mm[mmi];
d = bits & 31U;
bits &= ~31U;
}
}
}
return count * 2;
}
void main(in string[] args) {
import std.stdio, std.conv;
immutable uint side = (args.length >= 2) ? args[1].to!uint : 8;
writefln("N-queens(%d) = %d solutions.", side, side.nQueens);
}