RosettaCodeData/Task/Multiplicative-order/Go/multiplicative-order.go

103 lines
2.4 KiB
Go

package main
import (
"fmt"
"math/big"
)
func main() {
moTest(big.NewInt(37), big.NewInt(3343))
b := big.NewInt(100)
moTest(b.Add(b.Exp(ten, b, nil), one), big.NewInt(7919))
moTest(b.Add(b.Exp(ten, b.SetInt64(1000), nil), one), big.NewInt(15485863))
moTest(b.Sub(b.Exp(ten, b.SetInt64(10000), nil), one),
big.NewInt(22801763489))
moTest(big.NewInt(1511678068), big.NewInt(7379191741))
moTest(big.NewInt(3047753288), big.NewInt(2257683301))
}
func moTest(a, n *big.Int) {
if a.BitLen() < 100 {
fmt.Printf("ord(%v)", a)
} else {
fmt.Print("ord([big])")
}
if n.BitLen() < 100 {
fmt.Printf(" mod %v ", n)
} else {
fmt.Print(" mod [big] ")
}
if !n.ProbablyPrime(20) {
fmt.Println("not computed. modulus must be prime for this algorithm.")
return
}
fmt.Println("=", moBachShallit58(a, n, factor(new(big.Int).Sub(n, one))))
}
var one = big.NewInt(1)
var two = big.NewInt(2)
var ten = big.NewInt(10)
func moBachShallit58(a, n *big.Int, pf []pExp) *big.Int {
n1 := new(big.Int).Sub(n, one)
var x, y, o1, g big.Int
mo := big.NewInt(1)
for _, pe := range pf {
y.Quo(n1, y.Exp(pe.prime, big.NewInt(pe.exp), nil))
var o int64
for x.Exp(a, &y, n); x.Cmp(one) > 0; o++ {
x.Exp(&x, pe.prime, n)
}
o1.Exp(pe.prime, o1.SetInt64(o), nil)
mo.Mul(mo, o1.Quo(&o1, g.GCD(nil, nil, mo, &o1)))
}
return mo
}
type pExp struct {
prime *big.Int
exp int64
}
func factor(n *big.Int) (pf []pExp) {
var e int64
for ; n.Bit(int(e)) == 0; e++ {
}
if e > 0 {
n.Rsh(n, uint(e))
pf = []pExp{{big.NewInt(2), e}}
}
s := sqrt(n)
q, r := new(big.Int), new(big.Int)
for d := big.NewInt(3); n.Cmp(one) > 0; d.Add(d, two) {
if d.Cmp(s) > 0 {
d.Set(n)
}
for e = 0; ; e++ {
q.QuoRem(n, d, r)
if r.BitLen() > 0 {
break
}
n.Set(q)
}
if e > 0 {
pf = append(pf, pExp{new(big.Int).Set(d), e})
s = sqrt(n)
}
}
return
}
func sqrt(n *big.Int) *big.Int {
a := new(big.Int)
for b := new(big.Int).Set(n); ; {
a.Set(b)
b.Rsh(b.Add(b.Quo(n, a), a), 1)
if b.Cmp(a) >= 0 {
return a
}
}
return a.SetInt64(0)
}