RosettaCodeData/Task/Multiple-regression/Zkl/multiple-regression-2.zkl

57 lines
1.7 KiB
Plaintext

// Solve a linear system AX=B where A is symmetric and positive definite, so it can be Cholesky decomposed.
fcn linsys(A,B){
n,m:=A.len(),B[1].len(); // A.rows,B.cols
y:=n.pump(List.createLong(n).write,0.0); // writable vector of n zeros
X:=make_array(n,m,0.0);
L:=cholesky(A); // A=LL'
foreach col in (m){
foreach k in (n){ // Forward substitution: y = L\B
y[k]=( B[k][col] - k.reduce('wrap(s,j){ s + L[k][j]*y[j] },0.0) )
/L[k][k];
}
foreach k in ([n-1..0,-1]){ // Back substitution. x=L'\y
X[k][col]=
( y[k] - (k+1).reduce(n-k-1,'wrap(s,j){ s + L[j][k]*X[j][col] },0.0) )
/L[k][k];
}
}
X
}
fcn cholesky(mat){ // Cholesky decomposition task
rows:=mat.len();
r:=(0).pump(rows,List().write, (0).pump(rows,List,0.0).copy); // matrix of zeros
foreach i,j in (rows,i+1){
s:=(0).reduce(j,'wrap(s,k){ s + r[i][k]*r[j][k] },0.0);
r[i][j]=( if(i==j)(mat[i][i] - s).sqrt()
else 1.0/r[j][j]*(mat[i][j] - s) );
}
r
}
// Solve a linear least squares problem. Ax=b, with A being mxn, with m>n.
// Solves the linear system A'Ax=A'b.
fcn lsqr(A,b){
at:=transpose(A);
linsys(matMult(at,A), matMult(at,b));
}
// Least square fit of a polynomial of order n the x-y-curve.
fcn polyfit(x,y,n){
n+=1;
m:=x[0].len(); // columns
A:=make_array(m,n,0.0);
foreach i,j in (m,n){ A[i][j]=x[0][i].pow(j); }
lsqr(A, transpose(y));
}
fcn make_array(n,m,v){ (m).pump(List.createLong(m).write,v)*n }
fcn matMult(a,b){
n,m,p:=a[0].len(),a.len(),b[0].len();
ans:=make_array(m,p,0.0);
foreach i,j,k in (m,p,n){ ans[i][j]+=a[i][k]*b[k][j]; }
ans
}
fcn transpose(M){
if(M.len()==1) M[0].pump(List,List.create); // 1 row --> n columns
else M[0].zip(M.xplode(1));
}