RosettaCodeData/Task/K-d-tree/Common-Lisp/k-d-tree.lisp

90 lines
4.5 KiB
Common Lisp

(defun main ()
(let ((dims 0) (target nil) (hits 0))
;;; distance node to target:
;;; returns squared euclidean distance, or squared semi distance if option set
(defun distance (n &optional (semi nil))
(if semi (expt (- (nth (first n) (second n)) (nth (first n) target)) 2)
(reduce #'+ (mapcar (lambda (x y) (* (- x y) (- x y))) (second n) target))))
;;; returns true if target is to its left in axis dim
(defun target< (n)
(< (nth (first n) target) (nth (first n) (second n))))
;;; return the next child when nn searching, return opposing child if option oppose set
(defun next-node (n &optional (oppose nil))
(if (or (and (target< n) (not oppose)) (and (not (target< n)) oppose)) (third n) (fourth n)))
;;; a kdtree is a binary tree where nodes are:
;;; terminal: (axis data-point), or
;;; branch: (axis split-point (left-kdtree) (right-kdtree))
(defun make-kdtree(axis data)
(if (null data) nil
(if (eql (length data) 1) ; singleton?
(list axis (first data)) ;; terminal node
;; else branch node:
;; #pts=odd splits list into 2 even parts with sp in middle
;; #pts=even splits list into 2 uneven parts with shorter length first (but never nil)
(let ((sd (sort (copy-list data) #'< :key (lambda (x) (nth axis x)))) ;; sort the axis ordinates
(sp (truncate (/ (length data) 2))) ;; get mid pt
(nxta (mod (1+ axis) dims)))
(list axis (nth sp sd) (make-kdtree nxta (subseq sd 0 sp)) (make-kdtree nxta (subseq sd (1+ sp))))))))
;;; depth first visit all nodes in kdtree and optionally apply a function to each node visited
(defun visit-kdtree (kdt &key (node-function null))
(when kdt
(when node-function (funcall node-function kdt))
(visit-kdtree (third kdt) :node-function node-function)
(visit-kdtree (fourth kdt) :node-function node-function)))
;;; count of the terminal nodes
(defun count-nodes (kdt)
(if kdt
(if (eql (length kdt) 2) 1
(+ 1 (count-nodes (third kdt)) (count-nodes (fourth kdt))))
0))
;;; nearest neighbour search
(defun nn-kdtree (kdt node-stack)
(when kdt
;; stage 1 - find the 'closest' terminal node using insertion logic
(let ((best (do ((node kdt (next-node node))) ((not (next-node node)) (incf hits) node) ;; return first best est.
(push node node-stack) (incf hits)))) ; iteration
;; stage 2 - unwind the path, at each node if node is closer then make it best
(do ((node (pop node-stack) (pop node-stack))) ((null node) best) ;; return nearest pt
;; iteration: update best if node is closer
(when (< (distance node) (distance best))
(setf best node))
;; venture down opposing side if split point is inside HS
(let ((opposing-best
(if (< (distance node 'semi) (distance best)) ; use semi dist here
(nn-kdtree (next-node node 'opposite) (list))
nil))) ;; otherwise ignore this subtree
(when (and opposing-best (< (distance opposing-best) (distance best)))
(setf best opposing-best)))))))
;;; process one set of data & optionally display tree
(defun process (data tgt &optional (render nil))
(setf target tgt)
(setf dims (length target))
(setf hits 0)
(let* ((kdt (make-kdtree 0 data)) (nn (nn-kdtree kdt (list))))
(when render
(visit-kdtree kdt
:node-function (lambda (n)
(format t "~A node: axis:~A point: ~A target:~A semi-distance-sqd:~A euclidean-distance-sqd:~A~%"
(if (not (next-node n)) "TERMINAL" "BRANCH") (first n) (second n)
target (distance n 'semi) (distance n)))))
(format t "~%NN to ~A is ~A, distance ~A [tree has ~A nodes, ~A were visited.]~%" target (second nn) (sqrt (distance nn)) (count-nodes kdt) hits)))
;; MAIN: TASK 1 - nn search small set of 2D points
(process '((2 3) (5 4) (9 6) (4 7) (8 1) (7 2)) '(9 2) 'render)
;; TASK 2 - nn search 1000 coordinate points in 3D space
(process
(progn (let ((ll (list))) (dotimes (i 10) (dotimes (j 10) (dotimes (k 10) (push (list i j k) ll)))) ll))
(list (float (/ (random 1000) 100)) (float (/ (random 1000) 100)) (float (/ (random 1000) 100))))))