RosettaCodeData/Task/Evolutionary-algorithm/R/evolutionary-algorithm-1.r

53 lines
1.4 KiB
R

set.seed(1234, kind="Mersenne-Twister")
## Easier if the string is a character vector
target <- unlist(strsplit("METHINKS IT IS LIKE A WEASEL", ""))
charset <- c(LETTERS, " ")
parent <- sample(charset, length(target), replace=TRUE)
mutaterate <- 0.01
## Number of offspring in each generation
C <- 100
## Hamming distance between strings normalized by string length is used
## as the fitness function.
fitness <- function(parent, target) {
sum(parent == target) / length(target)
}
mutate <- function(parent, rate, charset) {
p <- runif(length(parent))
nMutants <- sum(p < rate)
if (nMutants) {
parent[ p < rate ] <- sample(charset, nMutants, replace=TRUE)
}
parent
}
evolve <- function(parent, mutate, fitness, C, mutaterate, charset) {
children <- replicate(C, mutate(parent, mutaterate, charset),
simplify=FALSE)
children <- c(list(parent), children)
children[[which.max(sapply(children, fitness, target=target))]]
}
.printGen <- function(parent, target, gen) {
cat(format(i, width=3),
formatC(fitness(parent, target), digits=2, format="f"),
paste(parent, collapse=""), "\n")
}
i <- 0
.printGen(parent, target, i)
while ( ! all(parent == target)) {
i <- i + 1
parent <- evolve(parent, mutate, fitness, C, mutaterate, charset)
if (i %% 20 == 0) {
.printGen(parent, target, i)
}
}
.printGen(parent, target, i)