RosettaCodeData/Task/Closest-pair-problem/Go/closest-pair-problem-2.go

117 lines
3.1 KiB
Go

// implementation following algorithm described in
// http://www.cs.umd.edu/~samir/grant/cp.pdf
package main
import (
"fmt"
"math"
"math/rand"
"time"
)
// number of points to search for closest pair
const n = 1e6
// size of bounding box for points.
// x and y will be random with uniform distribution in the range [0,scale).
const scale = 100.
// point struct
type xy struct {
x, y float64 // coordinates
key int64 // an annotation used in the algorithm
}
func d(p1, p2 xy) float64 {
return math.Hypot(p2.x-p1.x, p2.y-p1.y)
}
func main() {
rand.Seed(time.Now().Unix())
points := make([]xy, n)
for i := range points {
points[i] = xy{rand.Float64() * scale, rand.Float64() * scale, 0}
}
p1, p2 := closestPair(points)
fmt.Println(p1, p2)
fmt.Println("distance:", d(p1, p2))
}
func closestPair(s []xy) (p1, p2 xy) {
if len(s) < 2 {
panic("2 points required")
}
var dxi float64
// step 0
for s1, i := s, 1; ; i++ {
// step 1: compute min distance to a random point
// (for the case of random data, it's enough to just try
// to pick a different point)
rp := i % len(s1)
xi := s1[rp]
dxi = 2 * scale
for p, xn := range s1 {
if p != rp {
if dq := d(xi, xn); dq < dxi {
dxi = dq
}
}
}
// step 2: filter
invB := 3 / dxi // b is size of a mesh cell
mx := int64(scale*invB) + 1 // mx is number of cells along a side
// construct map as a histogram:
// key is index into mesh. value is count of points in cell
hm := map[int64]int{}
for ip, p := range s1 {
key := int64(p.x*invB)*mx + int64(p.y*invB)
s1[ip].key = key
hm[key]++
}
// construct s2 = s1 less the points without neighbors
s2 := make([]xy, 0, len(s1))
nx := []int64{-mx - 1, -mx, -mx + 1, -1, 0, 1, mx - 1, mx, mx + 1}
for i, p := range s1 {
nn := 0
for _, ofs := range nx {
nn += hm[p.key+ofs]
if nn > 1 {
s2 = append(s2, s1[i])
break
}
}
}
// step 3: done?
if len(s2) == 0 {
break
}
s1 = s2
}
// step 4: compute answer from approximation
invB := 1 / dxi
mx := int64(scale*invB) + 1
hm := map[int64][]int{}
for i, p := range s {
key := int64(p.x*invB)*mx + int64(p.y*invB)
s[i].key = key
hm[key] = append(hm[key], i)
}
nx := []int64{-mx - 1, -mx, -mx + 1, -1, 0, 1, mx - 1, mx, mx + 1}
var min = scale * 2
for ip, p := range s {
for _, ofs := range nx {
for _, iq := range hm[p.key+ofs] {
if ip != iq {
if d1 := d(p, s[iq]); d1 < min {
min = d1
p1, p2 = p, s[iq]
}
}
}
}
}
return p1, p2
}