RosettaCodeData/Task/Balanced-ternary/Haskell/balanced-ternary.hs

59 lines
1.6 KiB
Haskell

data BalancedTernary = Bt [Int]
zeroTrim a = if null s then [0] else s where
s = fst $ foldl f ([],[]) a
f (x,y) 0 = (x, y++[0])
f (x,y) z = (x++y++[z], [])
btList (Bt a) = a
instance Eq BalancedTernary where
(==) a b = btList a == btList b
btNormalize = listBt . _carry 0 where
_carry c [] = if c == 0 then [] else [c]
_carry c (a:as) = r:_carry cc as where
(cc, r) = f $ (a+c) `quotRem` 3 where
f (x, 2) = (x + 1, -1)
f (x, -2) = (x - 1, 1)
f x = x
listBt = Bt . zeroTrim
instance Show BalancedTernary where
show = reverse . map (\d->case d of -1->'-'; 0->'0'; 1->'+') . btList
strBt = Bt . zeroTrim.reverse.map (\c -> case c of '-' -> -1; '0' -> 0; '+' -> 1)
intBt :: Integral a => a -> BalancedTernary
intBt = fromIntegral . toInteger
btInt = foldr (\a z -> a + 3 * z) 0 . btList
listAdd a b = take (max (length a) (length b)) $ zipWith (+) (a++[0,0..]) (b++[0,0..])
-- mostly for operators, also small stuff to make GHC happy
instance Num BalancedTernary where
negate = Bt . map negate . btList
(+) x y = btNormalize $ listAdd (btList x) (btList y)
(*) x y = btNormalize $ mul_ (btList x) (btList y) where
mul_ _ [] = []
mul_ as b = foldr (\a z -> listAdd (map (a*) b) (0:z)) [] as
-- we don't need to define binary "-" by hand
signum (Bt a) = if a == [0] then 0 else Bt [last a]
abs x = if signum x == Bt [-1] then negate x else x
fromInteger = btNormalize . f where
f 0 = []
f x = fromInteger (rem x 3) : f (quot x 3)
main = let (a,b,c) = (strBt "+-0++0+", intBt (-436), strBt "+-++-")
r = a * (b - c)
in do
print $ map btInt [a,b,c]
print $ r
print $ btInt r