RosettaCodeData/Task/Arithmetic-Complex/SNOBOL4/arithmetic-complex.sno

41 lines
1.2 KiB
Plaintext

* # Define complex datatype
data('complex(r,i)')
* # Addition
define('addx(x1,x2)a,b,c,d') :(addx_end)
addx a = r(x1); b = i(x1); c = r(x2); d = i(x2)
addx = complex(a + c, b + d) :(return)
addx_end
* # Multiplication
define('multx(x1,x2)a,b,c,d') :(multx_end)
multx a = r(x1); b = i(x1); c = r(x2); d = i(x2)
multx = complex(a * c - b * d, b * c + a * d) :(return)
multx_end
* # Negation
define('negx(x)') :(negx_end)
negx negx = complex(-r(x), -i(x)) :(return)
negx_end
* # Inverse
define('invx(x)d') :(invx_end)
invx d = (r(x) * r(x)) + (i(x) * i(x))
invx = complex(1.0 * r(x) / d, 1.0 * -i(x) / d) :(return)
invx_end
* # Print compex number: a+bi / a-bi
define('printx(x)sign') :(printx_end)
printx sign = ge(i(x),0) '+'
printx = r(x) sign i(x) 'i' :(return)
printx_end
* # Test and display
a = complex(1,1)
b = complex(3.14159, 1.2)
output = printx( addx(a,b) )
output = printx( multx(a,b) )
output = printx( negx(a) ) ', ' printx( negx(b) )
output = printx( invx(a) ) ', ' printx( invx(b) )
end