RosettaCodeData/Task/Yellowstone-sequence/JavaScript/yellowstone-sequence.js

192 lines
4.9 KiB
JavaScript

(() => {
'use strict';
// yellowstone :: Generator [Int]
function* yellowstone() {
// A non finite stream of terms in the
// Yellowstone permutation of the natural numbers.
// OEIS A098550
const nextWindow = ([p2, p1, rest]) => {
const [rp2, rp1] = [p2, p1].map(
relativelyPrime
);
const go = xxs => {
const [x, xs] = Array.from(
uncons(xxs).Just
);
return rp1(x) && !rp2(x) ? (
Tuple(x)(xs)
) : secondArrow(cons(x))(
go(xs)
);
};
return [p1, ...Array.from(go(rest))];
};
const A098550 = fmapGen(x => x[1])(
iterate(nextWindow)(
[2, 3, enumFrom(4)]
)
);
yield 1
yield 2
while (true)(
yield A098550.next().value
)
};
// relativelyPrime :: Int -> Int -> Bool
const relativelyPrime = a =>
// True if a is relatively prime to b.
b => 1 === gcd(a)(b);
// ------------------------TEST------------------------
const main = () => console.log(
take(30)(
yellowstone()
)
);
// -----------------GENERIC FUNCTIONS------------------
// Just :: a -> Maybe a
const Just = x => ({
type: 'Maybe',
Nothing: false,
Just: x
});
// Nothing :: Maybe a
const Nothing = () => ({
type: 'Maybe',
Nothing: true,
});
// Tuple (,) :: a -> b -> (a, b)
const Tuple = a =>
b => ({
type: 'Tuple',
'0': a,
'1': b,
length: 2
});
// abs :: Num -> Num
const abs =
// Absolute value of a given number - without the sign.
Math.abs;
// cons :: a -> [a] -> [a]
const cons = x =>
xs => Array.isArray(xs) ? (
[x].concat(xs)
) : 'GeneratorFunction' !== xs
.constructor.constructor.name ? (
x + xs
) : ( // cons(x)(Generator)
function*() {
yield x;
let nxt = xs.next()
while (!nxt.done) {
yield nxt.value;
nxt = xs.next();
}
}
)();
// enumFrom :: Enum a => a -> [a]
function* enumFrom(x) {
// A non-finite succession of enumerable
// values, starting with the value x.
let v = x;
while (true) {
yield v;
v = 1 + v;
}
}
// fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b]
const fmapGen = f =>
function*(gen) {
let v = take(1)(gen);
while (0 < v.length) {
yield(f(v[0]))
v = take(1)(gen)
}
};
// gcd :: Int -> Int -> Int
const gcd = x => y => {
const
_gcd = (a, b) => (0 === b ? a : _gcd(b, a % b)),
abs = Math.abs;
return _gcd(abs(x), abs(y));
};
// iterate :: (a -> a) -> a -> Gen [a]
const iterate = f =>
function*(x) {
let v = x;
while (true) {
yield(v);
v = f(v);
}
};
// length :: [a] -> Int
const length = xs =>
// Returns Infinity over objects without finite
// length. This enables zip and zipWith to choose
// the shorter argument when one is non-finite,
// like cycle, repeat etc
(Array.isArray(xs) || 'string' === typeof xs) ? (
xs.length
) : Infinity;
// secondArrow :: (a -> b) -> ((c, a) -> (c, b))
const secondArrow = f => xy =>
// A function over a simple value lifted
// to a function over a tuple.
// f (a, b) -> (a, f(b))
Tuple(xy[0])(
f(xy[1])
);
// take :: Int -> [a] -> [a]
// take :: Int -> String -> String
const take = n =>
// The first n elements of a list,
// string of characters, or stream.
xs => 'GeneratorFunction' !== xs
.constructor.constructor.name ? (
xs.slice(0, n)
) : [].concat.apply([], Array.from({
length: n
}, () => {
const x = xs.next();
return x.done ? [] : [x.value];
}));
// uncons :: [a] -> Maybe (a, [a])
const uncons = xs => {
// Just a tuple of the head of xs and its tail,
// Or Nothing if xs is an empty list.
const lng = length(xs);
return (0 < lng) ? (
Infinity > lng ? (
Just(Tuple(xs[0])(xs.slice(1))) // Finite list
) : (() => {
const nxt = take(1)(xs);
return 0 < nxt.length ? (
Just(Tuple(nxt[0])(xs))
) : Nothing();
})() // Lazy generator
) : Nothing();
};
// MAIN ---
return main();
})();