43 lines
943 B
Plaintext
43 lines
943 B
Plaintext
func GCD(N, D); \Return the greatest common divisor of N and D
|
|
int N, D; \numerator and denominator
|
|
int R;
|
|
[if D > N then
|
|
[R:= D; D:= N; N:= R]; \swap D and N
|
|
while D > 0 do
|
|
[R:= rem(N/D);
|
|
N:= D;
|
|
D:= R;
|
|
];
|
|
return N;
|
|
]; \GCD
|
|
|
|
func Totient(N); \Return the totient of N
|
|
int N, Phi, M;
|
|
[Phi:= 0;
|
|
for M:= 1 to N do
|
|
if GCD(M, N) = 1 then Phi:= Phi+1;
|
|
return Phi;
|
|
];
|
|
|
|
int N, Phi, Pwr, C, Limit;
|
|
[Text(0, "n phi is prime^m^j");
|
|
for N:= 1 to 25 do
|
|
[IntOut(0, N); ChOut(0, 9\tab\);
|
|
Phi:= Totient(N);
|
|
IntOut(0, Phi); ChOut(0, 9\tab\);
|
|
Text(0, if Phi = N-1 then "true" else "false");
|
|
CrLf(0);
|
|
];
|
|
CrLf(0);
|
|
for Pwr:= 2 to 4 do
|
|
[C:= 0;
|
|
Limit:= fix(Pow(10.0, float(Pwr)));
|
|
IntOut(0, Limit); ChOut(0, 9\tab\);
|
|
for N:= 1 to Limit do
|
|
[Phi:= Totient(N);
|
|
if Phi = N-1 then C:= C+1;
|
|
];
|
|
IntOut(0, C); CrLf(0);
|
|
];
|
|
]
|