RosettaCodeData/Task/Totient-function/XPL0/totient-function.xpl0

43 lines
943 B
Plaintext

func GCD(N, D); \Return the greatest common divisor of N and D
int N, D; \numerator and denominator
int R;
[if D > N then
[R:= D; D:= N; N:= R]; \swap D and N
while D > 0 do
[R:= rem(N/D);
N:= D;
D:= R;
];
return N;
]; \GCD
func Totient(N); \Return the totient of N
int N, Phi, M;
[Phi:= 0;
for M:= 1 to N do
if GCD(M, N) = 1 then Phi:= Phi+1;
return Phi;
];
int N, Phi, Pwr, C, Limit;
[Text(0, "n phi is prime^m^j");
for N:= 1 to 25 do
[IntOut(0, N); ChOut(0, 9\tab\);
Phi:= Totient(N);
IntOut(0, Phi); ChOut(0, 9\tab\);
Text(0, if Phi = N-1 then "true" else "false");
CrLf(0);
];
CrLf(0);
for Pwr:= 2 to 4 do
[C:= 0;
Limit:= fix(Pow(10.0, float(Pwr)));
IntOut(0, Limit); ChOut(0, 9\tab\);
for N:= 1 to Limit do
[Phi:= Totient(N);
if Phi = N-1 then C:= C+1;
];
IntOut(0, C); CrLf(0);
];
]