RosettaCodeData/Task/Totient-function/ARM-Assembly/totient-function.arm

358 lines
10 KiB
Plaintext

/* ARM assembly Raspberry PI or android with termux */
/* program totient.s */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
.equ MAXI, 25
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessNumber: .asciz " number @ totient @ @ \n"
szCarriageReturn: .asciz "\n"
szMessPrime: .asciz " is prime."
szMessSpace: .asciz " "
szMessCounterPrime: .asciz "Number of primes to @ : @ \n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sZoneConv: .skip 24
/*********************************/
/* code section */
/*********************************/
.text
.global main
main:
mov r4,#1 @ start number
1:
mov r0,r4
bl totient @ compute totient
mov r5,r0
mov r0,r4
bl isPrime @ control if number is prime
mov r6,r0
mov r0,r4 @ display result
ldr r1,iAdrsZoneConv
bl conversion10 @ call décimal conversion
ldr r0,iAdrszMessNumber
ldr r1,iAdrsZoneConv @ insert conversion in message
bl strInsertAtCharInc
mov r7,r0
mov r0,r5
ldr r1,iAdrsZoneConv
bl conversion10 @ call décimal conversion
mov r0,r7
ldr r1,iAdrsZoneConv @ insert conversion in message
bl strInsertAtCharInc
mov r7,r0
cmp r6,#1
ldreq r1,iAdrszMessPrime
ldrne r1,iAdrszMessSpace
mov r0,r7
bl strInsertAtCharInc
bl affichageMess @ display message
add r4,r4,#1 @ increment number
cmp r4,#MAXI @ maxi ?
ble 1b @ and loop
mov r4,#2 @ first number
mov r5,#0 @ prime counter
ldr r6,iCst1000 @ load constantes
ldr r7,iCst10000
ldr r8,iCst100000
2:
mov r0,r4
bl isPrime
cmp r0,#0
beq 3f
add r5,r5,#1
3:
add r4,r4,#1
cmp r4,#100
bne 4f
mov r0,#100
mov r1,r5
bl displayCounter
b 7f
4:
cmp r4,r6 @ 1000
bne 5f
mov r0,r6
mov r1,r5
bl displayCounter
b 7f
5:
cmp r4,r7 @ 10000
bne 6f
mov r0,r7
mov r1,r5
bl displayCounter
b 7f
6:
cmp r4,r8 @ 100000
bne 7f
mov r0,r8
mov r1,r5
bl displayCounter
7:
cmp r4,r8
ble 2b @ and loop
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrszCarriageReturn: .int szCarriageReturn
iAdrsZoneConv: .int sZoneConv
iAdrszMessNumber: .int szMessNumber
iAdrszMessCounterPrime: .int szMessCounterPrime
iAdrszMessPrime: .int szMessPrime
iAdrszMessSpace: .int szMessSpace
iCst1000: .int 1000
iCst10000: .int 10000
iCst100000: .int 100000
/******************************************************************/
/* display counter */
/******************************************************************/
/* r0 contains limit */
/* r1 contains counter */
displayCounter:
push {r1-r3,lr} @ save registers
mov r2,r1
ldr r1,iAdrsZoneConv
bl conversion10 @ call décimal conversion
ldr r0,iAdrszMessCounterPrime
ldr r1,iAdrsZoneConv @ insert conversion in message
bl strInsertAtCharInc
mov r3,r0
mov r0,r2
ldr r1,iAdrsZoneConv
bl conversion10 @ call décimal conversion
mov r0,r3
ldr r1,iAdrsZoneConv @ insert conversion in message
bl strInsertAtCharInc
bl affichageMess
100:
pop {r1-r3,pc} @ restaur registers
/******************************************************************/
/* compute totient of number */
/******************************************************************/
/* r0 contains number */
totient:
push {r1-r5,lr} @ save registers
mov r4,r0 @ totient
mov r5,r0 @ save number
mov r1,#0 @ for first divisor
1: @ begin loop
mul r3,r1,r1 @ compute square
cmp r3,r5 @ compare number
bgt 4f @ end
add r1,r1,#2 @ next divisor
mov r0,r5
bl division
cmp r3,#0 @ remainder null ?
bne 3f
2: @ begin loop 2
mov r0,r5
bl division
cmp r3,#0
moveq r5,r2 @ new value = quotient
beq 2b
mov r0,r4 @ totient
bl division
sub r4,r4,r2 @ compute new totient
3:
cmp r1,#2 @ first divisor ?
moveq r1,#1 @ divisor = 1
b 1b @ and loop
4:
cmp r5,#1 @ final value > 1
ble 5f
mov r0,r4 @ totient
mov r1,r5 @ divide by value
bl division
sub r4,r4,r2 @ compute new totient
5:
mov r0,r4
100:
pop {r1-r5,pc} @ restaur registers
/***************************************************/
/* check if a number is prime */
/***************************************************/
/* r0 contains the number */
/* r0 return 1 if prime 0 else */
@2147483647
@4294967297
@131071
isPrime:
push {r1-r6,lr} @ save registers
cmp r0,#0
beq 90f
cmp r0,#17
bhi 1f
cmp r0,#3
bls 80f @ for 1,2,3 return prime
cmp r0,#5
beq 80f @ for 5 return prime
cmp r0,#7
beq 80f @ for 7 return prime
cmp r0,#11
beq 80f @ for 11 return prime
cmp r0,#13
beq 80f @ for 13 return prime
cmp r0,#17
beq 80f @ for 17 return prime
1:
tst r0,#1 @ even ?
beq 90f @ yes -> not prime
mov r2,r0 @ save number
sub r1,r0,#1 @ exposant n - 1
mov r0,#3 @ base
bl moduloPuR32 @ compute base power n - 1 modulo n
cmp r0,#1
bne 90f @ if <> 1 -> not prime
mov r0,#5
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#7
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#11
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#13
bl moduloPuR32
cmp r0,#1
bne 90f
mov r0,#17
bl moduloPuR32
cmp r0,#1
bne 90f
80:
mov r0,#1 @ is prime
b 100f
90:
mov r0,#0 @ no prime
100: @ fin standard de la fonction
pop {r1-r6,lr} @ restaur des registres
bx lr @ retour de la fonction en utilisant lr
/********************************************************/
/* Calcul modulo de b puissance e modulo m */
/* Exemple 4 puissance 13 modulo 497 = 445 */
/* */
/********************************************************/
/* r0 nombre */
/* r1 exposant */
/* r2 modulo */
/* r0 return result */
moduloPuR32:
push {r1-r7,lr} @ save registers
cmp r0,#0 @ verif <> zero
beq 100f
cmp r2,#0 @ verif <> zero
beq 100f @ TODO: vérifier les cas erreur
1:
mov r4,r2 @ save modulo
mov r5,r1 @ save exposant
mov r6,r0 @ save base
mov r3,#1 @ start result
mov r1,#0 @ division de r0,r1 par r2
bl division32R
mov r6,r2 @ base <- remainder
2:
tst r5,#1 @ exposant even or odd
beq 3f
umull r0,r1,r6,r3
mov r2,r4
bl division32R
mov r3,r2 @ result <- remainder
3:
umull r0,r1,r6,r6
mov r2,r4
bl division32R
mov r6,r2 @ base <- remainder
lsr r5,#1 @ left shift 1 bit
cmp r5,#0 @ end ?
bne 2b
mov r0,r3
100: @ fin standard de la fonction
pop {r1-r7,lr} @ restaur des registres
bx lr @ retour de la fonction en utilisant lr
/***************************************************/
/* division number 64 bits in 2 registers by number 32 bits */
/***************************************************/
/* r0 contains lower part dividende */
/* r1 contains upper part dividende */
/* r2 contains divisor */
/* r0 return lower part quotient */
/* r1 return upper part quotient */
/* r2 return remainder */
division32R:
push {r3-r9,lr} @ save registers
mov r6,#0 @ init upper upper part remainder !!
mov r7,r1 @ init upper part remainder with upper part dividende
mov r8,r0 @ init lower part remainder with lower part dividende
mov r9,#0 @ upper part quotient
mov r4,#0 @ lower part quotient
mov r5,#32 @ bits number
1: @ begin loop
lsl r6,#1 @ shift upper upper part remainder
lsls r7,#1 @ shift upper part remainder
orrcs r6,#1
lsls r8,#1 @ shift lower part remainder
orrcs r7,#1
lsls r4,#1 @ shift lower part quotient
lsl r9,#1 @ shift upper part quotient
orrcs r9,#1
@ divisor sustract upper part remainder
subs r7,r2
sbcs r6,#0 @ and substract carry
bmi 2f @ négative ?
@ positive or equal
orr r4,#1 @ 1 -> right bit quotient
b 3f
2: @ negative
orr r4,#0 @ 0 -> right bit quotient
adds r7,r2 @ and restaur remainder
adc r6,#0
3:
subs r5,#1 @ decrement bit size
bgt 1b @ end ?
mov r0,r4 @ lower part quotient
mov r1,r9 @ upper part quotient
mov r2,r7 @ remainder
100: @ function end
pop {r3-r9,lr} @ restaur registers
bx lr
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"