274 lines
6.7 KiB
JavaScript
274 lines
6.7 KiB
JavaScript
//-------------------------------------------[ Dancing Links and Algorithm X ]--
|
|
/**
|
|
* The doubly-doubly circularly linked data object.
|
|
* Data object X
|
|
*/
|
|
class DoX {
|
|
/**
|
|
* @param {string} V
|
|
* @param {!DoX=} H
|
|
*/
|
|
constructor(V, H) {
|
|
this.V = V;
|
|
this.L = this;
|
|
this.R = this;
|
|
this.U = this;
|
|
this.D = this;
|
|
this.S = 1;
|
|
this.H = H || this;
|
|
H && (H.S += 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper function to help build a horizontal doubly linked list.
|
|
* @param {!DoX} e An existing node in the list.
|
|
* @param {!DoX} n A new node to add to the right of the existing node.
|
|
* @return {!DoX}
|
|
*/
|
|
const addRight = (e, n) => {
|
|
n.R = e.R;
|
|
n.L = e;
|
|
e.R.L = n;
|
|
return e.R = n;
|
|
};
|
|
|
|
/**
|
|
* Helper function to help build a vertical doubly linked list.
|
|
* @param {!DoX} e An existing node in the list.
|
|
* @param {!DoX} n A new node to add below the existing node.
|
|
*/
|
|
const addBelow = (e, n) => {
|
|
n.D = e.D;
|
|
n.U = e;
|
|
e.D.U = n;
|
|
return e.D = n;
|
|
};
|
|
|
|
/**
|
|
* Verbatim copy of DK's search algorithm. The meat of the DLX algorithm.
|
|
* @param {!DoX} h The root node.
|
|
* @param {!Array<!DoX>} s The solution array.
|
|
*/
|
|
const search = function(h, s) {
|
|
if (h.R == h) {
|
|
printSol(s);
|
|
} else {
|
|
let c = chooseColumn(h);
|
|
cover(c);
|
|
for (let r = c.D; r != c; r = r.D) {
|
|
s.push(r);
|
|
for (let j = r.R; r !=j; j = j.R) {
|
|
cover(j.H);
|
|
}
|
|
search(h, s);
|
|
r = s.pop();
|
|
for (let j = r.R; j != r; j = j.R) {
|
|
uncover(j.H);
|
|
}
|
|
}
|
|
uncover(c);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Verbatim copy of DK's algorithm for choosing the next column object.
|
|
* @param {!DoX} h
|
|
* @return {!DoX}
|
|
*/
|
|
const chooseColumn = h => {
|
|
let s = Number.POSITIVE_INFINITY;
|
|
let c = h;
|
|
for(let j = h.R; j != h; j = j.R) {
|
|
if (j.S < s) {
|
|
c = j;
|
|
s = j.S;
|
|
}
|
|
}
|
|
return c;
|
|
};
|
|
|
|
|
|
/**
|
|
* Verbatim copy of DK's cover algorithm
|
|
* @param {!DoX} c
|
|
*/
|
|
const cover = c => {
|
|
c.L.R = c.R;
|
|
c.R.L = c.L;
|
|
for (let i = c.D; i != c; i = i.D) {
|
|
for (let j = i.R; j != i; j = j.R) {
|
|
j.U.D = j.D;
|
|
j.D.U = j.U;
|
|
j.H.S = j.H.S - 1;
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Verbatim copy of DK's cover algorithm
|
|
* @param {!DoX} c
|
|
*/
|
|
const uncover = c => {
|
|
for (let i = c.U; i != c; i = i.U) {
|
|
for (let j = i.L; i != j; j = j.L) {
|
|
j.H.S = j.H.S + 1;
|
|
j.U.D = j;
|
|
j.D.U = j;
|
|
}
|
|
}
|
|
c.L.R = c;
|
|
c.R.L = c;
|
|
};
|
|
|
|
//-----------------------------------------------------------[ Print Helpers ]--
|
|
/**
|
|
* Given the standard string format of a grid, print a formatted view of it.
|
|
* @param {!string|!Array} a
|
|
*/
|
|
const printGrid = function(a) {
|
|
|
|
const getChar = c => {
|
|
let r = Number(c);
|
|
if (isNaN(r)) { return c }
|
|
|
|
let o = 48;
|
|
if (r > 9 && r < 36) { o = 55 }
|
|
if (r >= 36) { o = 61 }
|
|
return String.fromCharCode(r + o)
|
|
};
|
|
|
|
a = 'string' == typeof a ? a.split('') : a;
|
|
|
|
let U = Math.sqrt(a.length);
|
|
let N = Math.sqrt(U);
|
|
let line = new Array(N).fill('+').reduce((p, c) => {
|
|
p.push(... Array.from(new Array(1 + N*2).fill('-')));
|
|
p.push(c);
|
|
return p;
|
|
}, ['\n+']).join('') + '\n';
|
|
|
|
a = a.reduce(function(p, c, i) {
|
|
let d = i && !(i % U), G = i && !(i % N);
|
|
i = !(i % (U * N));
|
|
d && !i && (p += '|\n| ');
|
|
d && i && (p += '|');
|
|
i && (p = '' + p + line + '| ');
|
|
return '' + p + (G && !d ? '| ' : '') + getChar(c) + ' ';
|
|
}, '') + '|' + line;
|
|
console.log(a);
|
|
|
|
};
|
|
|
|
/**
|
|
* Given a search solution, print the resultant grid.
|
|
* @param {!Array<!DoX>} a An array of data objects
|
|
*/
|
|
const printSol = a => {
|
|
printGrid(a.reduce((p, c) => {
|
|
let [i, v] = c.V.split(':');
|
|
p[i * 1] = v;
|
|
return p;
|
|
}, new Array(a.length).fill('.')));
|
|
};
|
|
|
|
//----------------------------------------------[ Grid to Exact cover Matrix ]--
|
|
/**
|
|
* Helper to get some meta about the grid.
|
|
* @param {!string} s The standard string representation of a grid.
|
|
* @return {!Array}
|
|
*/
|
|
const gridMeta = s => {
|
|
const g = s.split('');
|
|
const cellCount = g.length;
|
|
const tokenCount = Math.sqrt(cellCount);
|
|
const N = Math.sqrt(tokenCount);
|
|
const g2D = g.map(e => isNaN(e * 1) ?
|
|
new Array(tokenCount).fill(1).map((_, i) => i + 1) :
|
|
[e * 1]);
|
|
return [cellCount, N, tokenCount, g2D];
|
|
};
|
|
|
|
/**
|
|
* Given a cell grid index, return the row, column and box indexes.
|
|
* @param {!number} n The n-value of the grid. 3 for a 9x9 sudoku.
|
|
* @return {!function(!number): !Array<!number>}
|
|
*/
|
|
const indexesN = n => i => {
|
|
let c = Math.floor(i / (n * n));
|
|
i %= n * n;
|
|
return [c, i, Math.floor(c / n) * n + Math.floor(i / n)];
|
|
};
|
|
|
|
/**
|
|
* Given a puzzle string, reduce it to an exact-cover matrix and use
|
|
* Donald Knuth's DLX algorithm to solve it.
|
|
* @param puzString
|
|
*/
|
|
const reduceGrid = puzString => {
|
|
|
|
printGrid(puzString);
|
|
const [
|
|
numCells, // The total number of cells in a grid (81 for a 9x9 grid)
|
|
N, // the 'n' value of the grid. (3 for a 9x9 grid)
|
|
U, // The total number of unique tokens to be placed.
|
|
g2D // A 2D array representation of the grid, with each element
|
|
// being an array of candidates for a cell. Known cells are
|
|
// single element arrays.
|
|
] = gridMeta(puzString);
|
|
|
|
const getIndex = indexesN(N);
|
|
|
|
/**
|
|
* The DLX Header row.
|
|
* Its length is 4 times the grid's size. This is to be able to encode
|
|
* each of the 4 Sudoku constrains, onto each of the cells of the grid.
|
|
* The array is initialised with unlinked DoX nodes, but in the next step
|
|
* those nodes are all linked.
|
|
* @type {!Array.<!DoX>}
|
|
*/
|
|
const headRow = new Array(4 * numCells)
|
|
.fill('')
|
|
.map((_, i) => new DoX(`H${i}`));
|
|
|
|
/**
|
|
* The header row root object. This is circularly linked to be to the left
|
|
* of the first header object in the header row array.
|
|
* It is used as the entry point into the DLX algorithm.
|
|
* @type {!DoX}
|
|
*/
|
|
let H = new DoX('ROOT');
|
|
headRow.reduce((p, c) => addRight(p, c), H);
|
|
|
|
/**
|
|
* Transposed the sudoku puzzle into a exact cover matrix, so it can be passed
|
|
* to the DLX algorithm to solve.
|
|
*/
|
|
for (let i = 0; i < numCells; i++) {
|
|
const [ri, ci, bi] = getIndex(i);
|
|
g2D[i].forEach(num => {
|
|
let id = `${i}:${num}`;
|
|
let candIdx = num - 1;
|
|
|
|
// The 4 columns that we will populate.
|
|
const A = headRow[i];
|
|
const B = headRow[numCells + candIdx + (ri * U)];
|
|
const C = headRow[(numCells * 2) + candIdx + (ci * U)];
|
|
const D = headRow[(numCells * 3) + candIdx + (bi * U)];
|
|
|
|
// The Row-Column Constraint
|
|
let rcc = addBelow(A.U, new DoX(id, A));
|
|
|
|
// The Row-Number Constraint
|
|
let rnc = addBelow(B.U, addRight(rcc, new DoX(id, B)));
|
|
|
|
// The Column-Number Constraint
|
|
let cnc = addBelow(C.U, addRight(rnc, new DoX(id, C)));
|
|
|
|
// The Block-Number Constraint
|
|
addBelow(D.U, addRight(cnc, new DoX(id, D)));
|
|
});
|
|
}
|
|
search(H, []);
|
|
};
|