RosettaCodeData/Task/Sphenic-numbers/Java/sphenic-numbers.java

114 lines
3.7 KiB
Java

import java.util.Arrays;
import java.util.ArrayList;
import java.util.List;
public class SphenicNumbers {
public static void main(String[] args) {
final int limit = 1000000;
final int imax = limit / 6;
boolean[] sieve = primeSieve(imax + 1);
boolean[] sphenic = new boolean[limit + 1];
for (int i = 0; i <= imax; ++i) {
if (!sieve[i])
continue;
int jmax = Math.min(imax, limit / (i * i));
if (jmax <= i)
break;
for (int j = i + 1; j <= jmax; ++j) {
if (!sieve[j])
continue;
int p = i * j;
int kmax = Math.min(imax, limit / p);
if (kmax <= j)
break;
for (int k = j + 1; k <= kmax; ++k) {
if (!sieve[k])
continue;
assert(p * k <= limit);
sphenic[p * k] = true;
}
}
}
System.out.println("Sphenic numbers < 1000:");
for (int i = 0, n = 0; i < 1000; ++i) {
if (!sphenic[i])
continue;
++n;
System.out.printf("%3d%c", i, n % 15 == 0 ? '\n' : ' ');
}
System.out.println("\nSphenic triplets < 10,000:");
for (int i = 0, n = 0; i < 10000; ++i) {
if (i > 1 && sphenic[i] && sphenic[i - 1] && sphenic[i - 2]) {
++n;
System.out.printf("(%d, %d, %d)%c",
i - 2, i - 1, i, n % 3 == 0 ? '\n' : ' ');
}
}
int count = 0, triplets = 0, s200000 = 0, t5000 = 0;
for (int i = 0; i < limit; ++i) {
if (!sphenic[i])
continue;
++count;
if (count == 200000)
s200000 = i;
if (i > 1 && sphenic[i - 1] && sphenic[i - 2]) {
++triplets;
if (triplets == 5000)
t5000 = i;
}
}
System.out.printf("\nNumber of sphenic numbers < 1,000,000: %d\n", count);
System.out.printf("Number of sphenic triplets < 1,000,000: %d\n", triplets);
List<Integer> factors = primeFactors(s200000);
assert(factors.size() == 3);
System.out.printf("The 200,000th sphenic number: %d = %d * %d * %d\n",
s200000, factors.get(0), factors.get(1),
factors.get(2));
System.out.printf("The 5,000th sphenic triplet: (%d, %d, %d)\n",
t5000 - 2, t5000 - 1, t5000);
}
private static boolean[] primeSieve(int limit) {
boolean[] sieve = new boolean[limit];
Arrays.fill(sieve, true);
if (limit > 0)
sieve[0] = false;
if (limit > 1)
sieve[1] = false;
for (int i = 4; i < limit; i += 2)
sieve[i] = false;
for (int p = 3, sq = 9; sq < limit; p += 2) {
if (sieve[p]) {
for (int q = sq; q < limit; q += p << 1)
sieve[q] = false;
}
sq += (p + 1) << 2;
}
return sieve;
}
private static List<Integer> primeFactors(int n) {
List<Integer> factors = new ArrayList<>();
if (n > 1 && (n & 1) == 0) {
factors.add(2);
while ((n & 1) == 0)
n >>= 1;
}
for (int p = 3; p * p <= n; p += 2) {
if (n % p == 0) {
factors.add(p);
while (n % p == 0)
n /= p;
}
}
if (n > 1)
factors.add(n);
return factors;
}
}