RosettaCodeData/Task/Queue-Definition/Racket/queue-definition-2.rkt

33 lines
957 B
Racket

#lang racket
;; Invariants:
;; The elements in the queue are (append front (reverse back)).
;; Front is always non-empty (except for the empty queue).
(struct queue (front back))
(define empty (queue '() '()))
(define (push x q)
(if (null? (queue-front q))
(queue (reverse (cons x (queue-back q))) '())
(queue (queue-front q) (cons x (queue-back q)))))
(define (empty? q)
(null? (queue-front q)))
(define (pop q)
(cond [(empty? q) (error 'pop "the queue is empty")]
[(not (null? (queue-front q)))
(if (null? (rest (queue-front q)))
(queue (reverse (queue-back q)) '())
(queue (rest (queue-front q)) (queue-back q)))]
[else (queue (reverse (queue-back q)) '())]))
(define (first q)
(cond [(empty? q) (error 'first "the queue is empty")]
[(car (queue-front q))]))
;; Example:
(first (pop (pop (for/fold ([q empty]) ([x '(1 2 3 4)])
(push x q)))))
;; => 3