RosettaCodeData/Task/Priority-queue/Haskell/priority-queue-4.hs

125 lines
5.4 KiB
Haskell

data MinHeap kv = MinHeapEmpty
| MinHeapLeaf !kv
| MinHeapNode !kv {-# UNPACK #-} !Int !(MinHeap a) !(MinHeap a)
deriving (Show, Eq)
emptyPQ :: MinHeap kv
emptyPQ = MinHeapEmpty
isEmptyPQ :: PriorityQ kv -> Bool
isEmptyPQ Mt = True
isEmptyPQ _ = False
sizePQ :: (Ord kv) => MinHeap kv -> Int
sizePQ MinHeapEmpty = 0
sizePQ (MinHeapLeaf _) = 1
sizePQ (MinHeapNode _ cnt _ _) = cnt
peekMinPQ :: MinHeap kv -> Maybe kv
peekMinPQ MinHeapEmpty = Nothing
peekMinPQ (MinHeapLeaf v) = Just v
peekMinPQ (MinHeapNode v _ _ _) = Just v
pushPQ :: (Ord kv) => kv -> MinHeap kv -> MinHeap kv
pushPQ kv pq = insert kv 0 pq where -- insert element, keeping the tree balanced
insert kv _ MinHeapEmpty = MinHeapLeaf kv
insert kv _ (MinHeapLeaf vv) = if kv <= vv
then MinHeapNode kv 2 (MinHeapLeaf vv) MinHeapEmpty
else MinHeapNode vv 2 (MinHeapLeaf kv) MinHeapEmpty
insert kv msk (MinHeapNode vv cc ll rr) = if kv <= vv
then if nmsk >= 0
then MinHeapNode kv nc (insert vv nmsk ll) rr
else MinHeapNode kv nc ll (insert vv nmsk rr)
else if nmsk >= 0
then MinHeapNode vv nc (insert kv nmsk ll) rr
else MinHeapNode vv nc ll (insert kv nmsk rr)
where nc = cc + 1
nmsk = if msk /= 0 then msk `shiftL` 1 -- walk path to next
else let s = floor $ (log $ fromIntegral nc) / log 2 in
(nc `shiftL` ((finiteBitSize cc) - s)) .|. 1 --never 0 again
siftdown :: (Ord kv) => kv -> Int -> MinHeap kv -> MinHeap kv -> MinHeap kv
siftdown kv cnt lft rght = replace cnt lft rght where
replace cc ll rr = case rr of -- adj to put kv in current left/right
MinHeapEmpty -> -- means left is a MinHeapLeaf
case ll of { (MinHeapLeaf vl) ->
if kv <= vl
then MinHeapNode kv 2 ll MinHeapEmpty
else MinHeapNode vl 2 (MinHeapLeaf kv) MinHeapEmpty }
MinHeapLeaf vr ->
case ll of
MinHeapLeaf vl -> if vl <= vr
then if kv <= vl then MinHeapNode kv cc ll rr
else MinHeapNode vl cc (MinHeapLeaf kv) rr
else if kv <= vr then MinHeapNode kv cc ll rr
else MinHeapNode vr cc ll (MinHeapLeaf kv)
MinHeapNode vl ccl lll rrl -> if vl <= vr
then if kv <= vl then MinHeapNode kv cc ll rr
else MinHeapNode vl cc (replace ccl lll rrl) rr
else if kv <= vr then MinHeapNode kv cc ll rr
else MinHeapNode vr cc ll (MinHeapLeaf kv)
MinHeapNode vr ccr llr rrr -> case ll of
(MinHeapNode vl ccl lll rrl) -> -- right is node, so is left
if vl <= vr then
if kv <= vl then MinHeapNode kv cc ll rr
else MinHeapNode vl cc (replace ccl lll rrl) rr
else if kv <= vr then MinHeapNode kv cc ll rr
else MinHeapNode vr cc ll (replace ccr llr rrr)
replaceMinPQ :: (Ord kv) => a -> MinHeap kv -> MinHeap kv
replaceMinPQ _ MinHeapEmpty = MinHeapEmpty
replaceMinPQ kv (MinHeapLeaf _) = MinHeapLeaf kv
replaceMinPQ kv (MinHeapNode _ cc ll rr) = siftdown kv cc ll rr where
deleteMinPQ :: (Ord kv) => MinHeap kv -> MinHeap kv
deleteMinPQ MinHeapEmpty = MinHeapEmpty -- remove min keeping tree balanced
deleteMinPQ pq = let (dkv, npq) = delete 0 pq in
replaceMinPQ dkv npq where
delete _ (MinHeapLeaf vv) = (vv, MinHeapEmpty)
delete msk (MinHeapNode vv cc ll rr) =
if rr == MinHeapEmpty -- means left is MinHeapLeaf
then case ll of (MinHeapLeaf vl) -> (vl, MinHeapLeaf vv)
else if nmsk >= 0 -- means only deal with left
then let (dv, npq) = delete nmsk ll in
(dv, MinHeapNode vv (cc - 1) npq rr)
else let (dv, npq) = delete nmsk rr in
(dv, MinHeapNode vv (cc - 1) ll npq)
where nmsk = if msk /= 0 then msk `shiftL` 1 -- walk path to last
else let s = floor $ (log $ fromIntegral cc) / log 2 in
(cc `shiftL` ((finiteBitSize cc) - s)) .|. 1 --never 0 again
adjustPQ :: (Ord kv) => (kv -> kv) -> MinHeap kv -> MinHeap kv
adjustPQ f pq = adjust pq where -- applies function to every element and reheapifies
adjust MinHeapEmpty = MinHeapEmpty
adjust (MinHeapLeaf v) = MinHeapLeaf (f v)
adjust (MinHeapNode vv cc ll rr) = siftdown (f vv) cc (adjust ll) (adjust rr)
fromListPQ :: (Ord kv) => [kv] -> MinHeap kv
-- fromListPQ = foldl (flip pushPQ) MinHeapEmpty -- O(n log n) time; slow
fromListPQ [] = MinHeapEmpty -- O(n) time using "adjust id" which is O(n)
fromListPQ xs = let (_, pq) = build 1 xs in pq where
sz = length xs
szd2 = sz `div` 2
build _ [] = ([], MinHeapEmpty)
build lvl (x:xs') = if lvl > szd2 then (xs', MinHeapLeaf x)
else let nlvl = lvl + lvl in
let (xrl, pql) = build nlvl xs' in
let (xrr, pqr) = if nlvl >= sz
then (xrl, MinHeapEmpty) -- no right leaf
else build (nlvl + 1) xrl in
let cnt = sizePQ pql + sizePQ pqr + 1 in
(xrr, siftdown x cnt pql pqr)
popMinPQ :: (Ord kv) => MinHeap kv -> Maybe (kv, MinHeap kv)
popMinPQ pq = case peekMinPQ pq of
Nothing -> Nothing
Just v -> Just (v, deleteMinPQ pq)
toListPQ :: (Ord kv) => MinHeap kv -> [kv]
toListPQ = unfoldr f where
f MinHeapEmpty = Nothing
f pq = popMinPQ pq
sortPQ :: (Ord kv) => [kv] -> [kv]
sortPQ ls = toListPQ $ fromListPQ ls