RosettaCodeData/Task/Permutations/Racket/permutations.rkt

61 lines
2.1 KiB
Racket

#lang racket
;; using a builtin
(permutations '(A B C))
;; -> '((A B C) (B A C) (A C B) (C A B) (B C A) (C B A))
;; a random simple version (which is actually pretty good for a simple version)
(define (perms l)
(let loop ([l l] [tail '()])
(if (null? l) (list tail)
(append-map (λ(x) (loop (remq x l) (cons x tail))) l))))
(perms '(A B C))
;; -> '((C B A) (B C A) (C A B) (A C B) (B A C) (A B C))
;; permutations in lexicographic order
(define (lperms s)
(cond [(empty? s) '()]
[(empty? (cdr s)) (list s)]
[else
(let splice ([l '()][m (car s)][r (cdr s)])
(append
(map (lambda (x) (cons m x)) (lperms (append l r)))
(if (empty? r) '()
(splice (append l (list m)) (car r) (cdr r)))))]))
(display (lperms '(A B C)))
;; -> ((A B C) (A C B) (B A C) (B C A) (C A B) (C B A))
;; permutations in lexicographical order using generators
(require racket/generator)
(define (splice s)
(generator ()
(let outer-loop ([l '()][m (car s)][r (cdr s)])
(let ([permuter (lperm (append l r))])
(let inner-loop ([p (permuter)])
(when (not (void? p))
(let ([q (cons m p)])
(yield q)
(inner-loop (permuter))))))
(if (not (empty? r))
(outer-loop (append l (list m)) (car r) (cdr r))
(void)))))
(define (lperm s)
(generator ()
(cond [(empty? s) (yield '())]
[(empty? (cdr s)) (yield s)]
[else
(let ([splicer (splice s)])
(let loop ([q (splicer)])
(when (not (void? q))
(begin
(yield q)
(loop (splicer))))))])
(void)))
(let ([permuter (lperm '(A B C))])
(let next-perm ([p (permuter)])
(when (not (void? p))
(begin
(display p)
(next-perm (permuter))))))
;; -> (A B C)(A C B)(B A C)(B C A)(C A B)(C B A)