RosettaCodeData/Task/P-Adic-numbers-basic/Wren/p-adic-numbers-basic.wren

275 lines
6.3 KiB
Plaintext

import "./dynamic" for Struct
// constants
var EMX = 64 // exponent maximum (if indexing starts at -EMX)
var DMX = 1e5 // approximation loop maximum
var AMX = 1048576 // argument maximum
var PMAX = 32749 // prime maximum
// global variables
var P1 = 0
var P = 7 // default prime
var K = 11 // precision
var Ratio = Struct.create("Ratio", ["a", "b"])
class Padic {
// uninitialized
construct new() {
_v = 0
_d = List.filled(2 * EMX, 0) // add EMX to index to be consistent wih FB
}
// properties
v { _v }
v=(o) { _v = o }
d { _d }
// (re)initialize 'this' from Ratio, set 'sw' to print
r2pa(q, sw) {
var a = q.a
var b = q.b
if (b == 0) return 1
if (b < 0) {
b = -b
a = -a
}
if (a.abs > AMX || b > AMX) return -1
if (P < 2 || K < 1) return 1
P = P.min(PMAX) // maximum short prime
K = K.min(EMX-1) // maximum array length
if (sw != 0) {
System.write("%(a)/%(b) + ") // numerator, denominator
System.print("0(%(P)^%(K))") // prime, precision
}
// (re)initialize
_v = 0
P1 = P - 1
_d = List.filled(2 * EMX, 0)
if (a == 0) return 0
var i = 0
// find -exponent of P in b
while (b%P == 0) {
b = (b/P).truncate
i = i - 1
}
var s = 0
var r = b % P
// modular inverse for small P
var b1 = 1
while (b1 <= P1) {
s = s + r
if (s > P1) s = s - P
if (s == 1) break
b1 = b1 + 1
}
if (b1 == P) {
System.print("r2pa: impossible inverse mod")
return -1
}
_v = EMX
while (true) {
// find exponent of P in a
while (a%P == 0) {
a = (a/P).truncate
i = i + 1
}
// valuation
if (_v == EMX) _v = i
// upper bound
if (i >= EMX) break
// check precision
if ((i - _v) > K) break
// next digit
_d[i+EMX] = a * b1 % P
if (_d[i+EMX] < 0) _d[i+EMX] = _d[i+EMX] + P
// remainder - digit * divisor
a = a - _d[i+EMX]*b
if (a == 0) break
}
return 0
}
// Horner's rule
dsum() {
var t = _v.min(0)
var s = 0
for (i in K - 1 + t..t) {
var r = s
s = s * P
if (r != 0 && ((s/r).truncate - P) != 0) {
// overflow
s = -1
break
}
s = s + _d[i+EMX]
}
return s
}
// rational reconstruction
crat() {
var fl = false
var s = this
var j = 0
var i = 1
// denominator count
while (i <= DMX) {
// check for integer
j = K - 1 + _v
while (j >= _v) {
if (s.d[j+EMX] != 0) break
j = j - 1
}
fl = ((j - _v) * 2) < K
if (fl) {
fl = false
break
}
// check negative integer
j = K - 1 + _v
while (j >= _v) {
if (P1 - s.d[j+EMX] != 0) break
j = j - 1
}
fl = ((j - _v) * 2) < K
if (fl) break
// repeatedly add self to s
s = s + this
i = i + 1
}
if (fl) s = s.cmpt
// numerator: weighted digit sum
var x = s.dsum()
var y = i
if (x < 0 || y > DMX) {
System.print("crat: fail")
} else {
// negative powers
i = _v
while (i <= -1) {
y = y * P
i = i + 1
}
// negative rational
if (fl) x = -x
System.write(x)
if (y > 1) System.write("/%(y)")
System.print()
}
}
// print expansion
printf(sw) {
var t = _v.min(0)
for (i in K - 1 + t..t) {
System.write(_d[i + EMX])
if (i == 0 && _v < 0) System.write(".")
System.write(" ")
}
System.print()
// rational approximation
if (sw != 0) crat()
}
// add b to 'this'
+(b) {
var c = 0
var r = Padic.new()
r.v = _v.min(b.v)
for (i in r.v..K + r.v) {
c = c + _d[i+EMX] + b.d[i+EMX]
if (c > P1) {
r.d[i+EMX] = c - P
c = 1
} else {
r.d[i+EMX] = c
c = 0
}
}
return r
}
// complement
cmpt {
var c = 1
var r = Padic.new()
r.v = _v
for (i in _v..K + _v) {
c = c + P1 - _d[i+EMX]
if (c > P1) {
r.d[i+EMX] = c - P
c = 1
} else {
r.d[i+EMX] = c
c = 0
}
}
return r
}
}
var data = [
/* rational reconstruction depends on the precision
until the dsum-loop overflows */
[2, 1, 2, 4, 1, 1],
[4, 1, 2, 4, 3, 1],
[4, 1, 2, 5, 3, 1],
[4, 9, 5, 4, 8, 9],
[26, 25, 5, 4, -109, 125],
[49, 2, 7, 6, -4851, 2],
[-9, 5, 3, 8, 27, 7],
[5, 19, 2, 12, -101, 384],
/* two decadic pairs */
[2, 7, 10, 7, -1, 7],
[34, 21, 10, 9, -39034, 791],
/* familiar digits */
[11, 4, 2, 43, 679001, 207],
[-8, 9, 23, 9, 302113, 92],
[-22, 7, 3, 23, 46071, 379],
[-22, 7, 32749, 3, 46071, 379],
[35, 61, 5, 20, 9400, 109],
[-101, 109, 61, 7, 583376, 6649],
[-25, 26, 7, 13, 5571, 137],
[1, 4, 7, 11, 9263, 2837],
[122, 407, 7, 11, -517, 1477],
/* more subtle */
[5, 8, 7, 11, 353, 30809]
]
var sw = 0
var a = Padic.new()
var b = Padic.new()
for (d in data) {
var q = Ratio.new(d[0], d[1])
P = d[2]
K = d[3]
sw = a.r2pa(q, 1)
if (sw == 1) break
a.printf(0)
q.a = d[4]
q.b = d[5]
sw = sw | b.r2pa(q, 1)
if (sw == 1) break
if (sw == 0) {
b.printf(0)
var c = a + b
System.print("+ =")
c.printf(1)
}
System.print()
}