RosettaCodeData/Task/P-Adic-numbers-basic/Go/p-adic-numbers-basic.go

331 lines
6.2 KiB
Go

package main
import "fmt"
// constants
const EMX = 64 // exponent maximum (if indexing starts at -EMX)
const DMX = 100000 // approximation loop maximum
const AMX = 1048576 // argument maximum
const PMAX = 32749 // prime maximum
// global variables
var p1 = 0
var p = 7 // default prime
var k = 11 // precision
func abs(a int) int {
if a >= 0 {
return a
}
return -a
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
type Ratio struct {
a, b int
}
type Padic struct {
v int
d [2 * EMX]int // add EMX to index to be consistent wih FB
}
// (re)initialize receiver from Ratio, set 'sw' to print
func (pa *Padic) r2pa(q Ratio, sw int) int {
a := q.a
b := q.b
if b == 0 {
return 1
}
if b < 0 {
b = -b
a = -a
}
if abs(a) > AMX || b > AMX {
return -1
}
if p < 2 || k < 1 {
return 1
}
p = min(p, PMAX) // maximum short prime
k = min(k, EMX-1) // maxumum array length
if sw != 0 {
fmt.Printf("%d/%d + ", a, b) // numerator, denominator
fmt.Printf("0(%d^%d)\n", p, k) // prime, precision
}
// (re)initialize
pa.v = 0
p1 = p - 1
pa.d = [2 * EMX]int{}
if a == 0 {
return 0
}
i := 0
// find -exponent of p in b
for b%p == 0 {
b = b / p
i--
}
s := 0
r := b % p
// modular inverse for small p
b1 := 1
for b1 <= p1 {
s += r
if s > p1 {
s -= p
}
if s == 1 {
break
}
b1++
}
if b1 == p {
fmt.Println("r2pa: impossible inverse mod")
return -1
}
pa.v = EMX
for {
// find exponent of P in a
for a%p == 0 {
a = a / p
i++
}
// valuation
if pa.v == EMX {
pa.v = i
}
// upper bound
if i >= EMX {
break
}
// check precision
if (i - pa.v) > k {
break
}
// next digit
pa.d[i+EMX] = a * b1 % p
if pa.d[i+EMX] < 0 {
pa.d[i+EMX] += p
}
// remainder - digit * divisor
a -= pa.d[i+EMX] * b
if a == 0 {
break
}
}
return 0
}
// Horner's rule
func (pa *Padic) dsum() int {
t := min(pa.v, 0)
s := 0
for i := k - 1 + t; i >= t; i-- {
r := s
s *= p
if r != 0 && (s/r-p != 0) {
// overflow
s = -1
break
}
s += pa.d[i+EMX]
}
return s
}
// add b to receiver
func (pa *Padic) add(b Padic) *Padic {
c := 0
r := Padic{}
r.v = min(pa.v, b.v)
for i := r.v; i <= k+r.v; i++ {
c += pa.d[i+EMX] + b.d[i+EMX]
if c > p1 {
r.d[i+EMX] = c - p
c = 1
} else {
r.d[i+EMX] = c
c = 0
}
}
return &r
}
// complement of receiver
func (pa *Padic) cmpt() *Padic {
c := 1
r := Padic{}
r.v = pa.v
for i := pa.v; i <= k+pa.v; i++ {
c += p1 - pa.d[i+EMX]
if c > p1 {
r.d[i+EMX] = c - p
c = 1
} else {
r.d[i+EMX] = c
c = 0
}
}
return &r
}
// rational reconstruction
func (pa *Padic) crat() {
fl := false
s := pa
j := 0
i := 1
// denominator count
for i <= DMX {
// check for integer
j = k - 1 + pa.v
for j >= pa.v {
if s.d[j+EMX] != 0 {
break
}
j--
}
fl = ((j - pa.v) * 2) < k
if fl {
fl = false
break
}
// check negative integer
j = k - 1 + pa.v
for j >= pa.v {
if p1-s.d[j+EMX] != 0 {
break
}
j--
}
fl = ((j - pa.v) * 2) < k
if fl {
break
}
// repeatedly add self to s
s = s.add(*pa)
i++
}
if fl {
s = s.cmpt()
}
// numerator: weighted digit sum
x := s.dsum()
y := i
if x < 0 || y > DMX {
fmt.Println(x, y)
fmt.Println("crat: fail")
} else {
// negative powers
i = pa.v
for i <= -1 {
y *= p
i++
}
// negative rational
if fl {
x = -x
}
fmt.Print(x)
if y > 1 {
fmt.Printf("/%d", y)
}
fmt.Println()
}
}
// print expansion
func (pa *Padic) printf(sw int) {
t := min(pa.v, 0)
for i := k - 1 + t; i >= t; i-- {
fmt.Print(pa.d[i+EMX])
if i == 0 && pa.v < 0 {
fmt.Print(".")
}
fmt.Print(" ")
}
fmt.Println()
// rational approximation
if sw != 0 {
pa.crat()
}
}
func main() {
data := [][]int{
/* rational reconstruction depends on the precision
until the dsum-loop overflows */
{2, 1, 2, 4, 1, 1},
{4, 1, 2, 4, 3, 1},
{4, 1, 2, 5, 3, 1},
{4, 9, 5, 4, 8, 9},
{26, 25, 5, 4, -109, 125},
{49, 2, 7, 6, -4851, 2},
{-9, 5, 3, 8, 27, 7},
{5, 19, 2, 12, -101, 384},
/* two decadic pairs */
{2, 7, 10, 7, -1, 7},
{34, 21, 10, 9, -39034, 791},
/* familiar digits */
{11, 4, 2, 43, 679001, 207},
{-8, 9, 23, 9, 302113, 92},
{-22, 7, 3, 23, 46071, 379},
{-22, 7, 32749, 3, 46071, 379},
{35, 61, 5, 20, 9400, 109},
{-101, 109, 61, 7, 583376, 6649},
{-25, 26, 7, 13, 5571, 137},
{1, 4, 7, 11, 9263, 2837},
{122, 407, 7, 11, -517, 1477},
/* more subtle */
{5, 8, 7, 11, 353, 30809},
}
sw := 0
a := Padic{}
b := Padic{}
for _, d := range data {
q := Ratio{d[0], d[1]}
p = d[2]
k = d[3]
sw = a.r2pa(q, 1)
if sw == 1 {
break
}
a.printf(0)
q.a = d[4]
q.b = d[5]
sw = sw | b.r2pa(q, 1)
if sw == 1 {
break
}
if sw == 0 {
b.printf(0)
c := a.add(b)
fmt.Println("+ =")
c.printf(1)
}
fmt.Println()
}
}