403 lines
10 KiB
C#
403 lines
10 KiB
C#
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using System.Text;
|
|
|
|
public static class PAdicNumbersBasic
|
|
{
|
|
public static void Main(string[] args)
|
|
{
|
|
Console.WriteLine("3-adic numbers:");
|
|
Padic padicOne = new Padic(3, -5, 9);
|
|
Console.WriteLine("-5 / 9 => " + padicOne);
|
|
Padic padicTwo = new Padic(3, 47, 12);
|
|
Console.WriteLine("47 / 12 => " + padicTwo);
|
|
|
|
Padic sum = padicOne.Add(padicTwo);
|
|
Console.WriteLine("sum => " + sum);
|
|
Console.WriteLine("Rational = " + sum.ConvertToRational());
|
|
Console.WriteLine();
|
|
|
|
Console.WriteLine("7-adic numbers:");
|
|
padicOne = new Padic(7, 5, 8);
|
|
Console.WriteLine("5 / 8 => " + padicOne);
|
|
padicTwo = new Padic(7, 353, 30809);
|
|
Console.WriteLine("353 / 30809 => " + padicTwo);
|
|
|
|
sum = padicOne.Add(padicTwo);
|
|
Console.WriteLine("sum => " + sum);
|
|
Console.WriteLine("Rational = " + sum.ConvertToRational());
|
|
}
|
|
}
|
|
|
|
public sealed class Padic
|
|
{
|
|
/**
|
|
* Create a p-adic, with p = aPrime, from the given rational 'aNumerator' / 'aDenominator'.
|
|
*/
|
|
public Padic(int aPrime, int aNumerator, int aDenominator)
|
|
{
|
|
if (aDenominator == 0)
|
|
{
|
|
throw new ArgumentException("Denominator cannot be zero");
|
|
}
|
|
|
|
prime = aPrime;
|
|
digits = new List<int>(DIGITS_SIZE);
|
|
order = 0;
|
|
|
|
// Process rational zero
|
|
if (aNumerator == 0)
|
|
{
|
|
order = MAX_ORDER;
|
|
return;
|
|
}
|
|
|
|
// Remove multiples of 'prime' and adjust the order of the p-adic number accordingly
|
|
while (FloorMod(aNumerator, prime) == 0)
|
|
{
|
|
aNumerator /= prime;
|
|
order += 1;
|
|
}
|
|
|
|
while (FloorMod(aDenominator, prime) == 0)
|
|
{
|
|
aDenominator /= prime;
|
|
order -= 1;
|
|
}
|
|
|
|
// Standard calculation of p-adic digits
|
|
long inverse = ModuloInverse(aDenominator);
|
|
while (digits.Count < DIGITS_SIZE)
|
|
{
|
|
int digit = FloorMod((int)(aNumerator * inverse), prime);
|
|
digits.Add(digit);
|
|
|
|
aNumerator -= digit * aDenominator;
|
|
|
|
if (aNumerator != 0)
|
|
{
|
|
// The denominator is not a power of a prime
|
|
int count = 0;
|
|
while (FloorMod(aNumerator, prime) == 0)
|
|
{
|
|
aNumerator /= prime;
|
|
count += 1;
|
|
}
|
|
|
|
for (int i = count; i > 1; i--)
|
|
{
|
|
digits.Add(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the sum of this p-adic number and the given p-adic number.
|
|
*/
|
|
public Padic Add(Padic aOther)
|
|
{
|
|
if (prime != aOther.prime)
|
|
{
|
|
throw new ArgumentException("Cannot add p-adic's with different primes");
|
|
}
|
|
|
|
List<int> result = new List<int>();
|
|
|
|
// Adjust the digits so that the p-adic points are aligned
|
|
for (int i = 0; i < -order + aOther.order; i++)
|
|
{
|
|
aOther.digits.Insert(0, 0);
|
|
}
|
|
|
|
for (int i = 0; i < -aOther.order + order; i++)
|
|
{
|
|
digits.Insert(0, 0);
|
|
}
|
|
|
|
// Standard digit by digit addition
|
|
int carry = 0;
|
|
for (int i = 0; i < Math.Min(digits.Count, aOther.digits.Count); i++)
|
|
{
|
|
int sum = digits[i] + aOther.digits[i] + carry;
|
|
int remainder = FloorMod(sum, prime);
|
|
carry = (sum >= prime) ? 1 : 0;
|
|
result.Add(remainder);
|
|
}
|
|
|
|
// Reverse the changes made to the digits
|
|
for (int i = 0; i < -order + aOther.order; i++)
|
|
{
|
|
aOther.digits.RemoveAt(0);
|
|
}
|
|
|
|
for (int i = 0; i < -aOther.order + order; i++)
|
|
{
|
|
digits.RemoveAt(0);
|
|
}
|
|
|
|
return new Padic(prime, result, AllZeroDigits(result) ? MAX_ORDER : Math.Min(order, aOther.order));
|
|
}
|
|
|
|
/**
|
|
* Return the Rational representation of this p-adic number.
|
|
*/
|
|
public Rational ConvertToRational()
|
|
{
|
|
List<int> numbers = new List<int>(digits);
|
|
|
|
// Zero
|
|
if (numbers.Count == 0 || AllZeroDigits(numbers))
|
|
{
|
|
return new Rational(0, 1);
|
|
}
|
|
|
|
// Positive integer
|
|
if (order >= 0 && EndsWith(numbers, 0))
|
|
{
|
|
for (int i = 0; i < order; i++)
|
|
{
|
|
numbers.Insert(0, 0);
|
|
}
|
|
|
|
return new Rational(ConvertToDecimal(numbers), 1);
|
|
}
|
|
|
|
// Negative integer
|
|
if (order >= 0 && EndsWith(numbers, prime - 1))
|
|
{
|
|
NegateList(numbers);
|
|
for (int i = 0; i < order; i++)
|
|
{
|
|
numbers.Insert(0, 0);
|
|
}
|
|
|
|
return new Rational(-ConvertToDecimal(numbers), 1);
|
|
}
|
|
|
|
// Rational
|
|
Padic sum = new Padic(prime, new List<int>(digits), order);
|
|
Padic self = new Padic(prime, new List<int>(digits), order);
|
|
int denominator = 1;
|
|
do
|
|
{
|
|
sum = sum.Add(self);
|
|
denominator += 1;
|
|
} while (!(EndsWith(sum.digits, 0) || EndsWith(sum.digits, prime - 1)));
|
|
|
|
bool negative = EndsWith(sum.digits, prime - 1);
|
|
if (negative)
|
|
{
|
|
NegateList(sum.digits);
|
|
}
|
|
|
|
int numerator = negative ? -ConvertToDecimal(sum.digits) : ConvertToDecimal(sum.digits);
|
|
|
|
if (order > 0)
|
|
{
|
|
numerator *= (int)Math.Pow(prime, order);
|
|
}
|
|
|
|
if (order < 0)
|
|
{
|
|
denominator *= (int)Math.Pow(prime, -order);
|
|
}
|
|
|
|
return new Rational(numerator, denominator);
|
|
}
|
|
|
|
/**
|
|
* Return a string representation of this p-adic.
|
|
*/
|
|
public override string ToString()
|
|
{
|
|
List<int> numbers = new List<int>(digits);
|
|
PadWithZeros(numbers);
|
|
numbers.Reverse();
|
|
string numberString = string.Join("", numbers.Select(n => n.ToString()));
|
|
StringBuilder builder = new StringBuilder(numberString);
|
|
|
|
if (order >= 0)
|
|
{
|
|
for (int i = 0; i < order; i++)
|
|
{
|
|
builder.Append("0");
|
|
}
|
|
|
|
builder.Append(".0");
|
|
}
|
|
else
|
|
{
|
|
builder.Insert(builder.Length + order, ".");
|
|
|
|
while (builder.ToString().EndsWith("0"))
|
|
{
|
|
builder.Remove(builder.Length - 1, 1);
|
|
}
|
|
}
|
|
|
|
return " ..." + builder.ToString().Substring(builder.Length - PRECISION - 1);
|
|
}
|
|
|
|
// PRIVATE //
|
|
|
|
/**
|
|
* Create a p-adic, with p = 'aPrime', directly from a list of digits.
|
|
*
|
|
* With 'aOrder' = 0, the list [1, 2, 3, 4, 5] creates the p-adic ...54321.0
|
|
* 'aOrder' > 0 shifts the list 'aOrder' places to the left and
|
|
* 'aOrder' < 0 shifts the list 'aOrder' places to the right.
|
|
*/
|
|
private Padic(int aPrime, List<int> aDigits, int aOrder)
|
|
{
|
|
prime = aPrime;
|
|
digits = new List<int>(aDigits);
|
|
order = aOrder;
|
|
}
|
|
|
|
/**
|
|
* Return the multiplicative inverse of the given decimal number modulo 'prime'.
|
|
*/
|
|
private int ModuloInverse(int aNumber)
|
|
{
|
|
int inverse = 1;
|
|
while (FloorMod(inverse * aNumber, prime) != 1)
|
|
{
|
|
inverse += 1;
|
|
}
|
|
|
|
return inverse;
|
|
}
|
|
|
|
/**
|
|
* Transform the given list of digits representing a p-adic number
|
|
* into a list which represents the negation of the p-adic number.
|
|
*/
|
|
private void NegateList(List<int> aDigits)
|
|
{
|
|
aDigits[0] = FloorMod(prime - aDigits[0], prime);
|
|
for (int i = 1; i < aDigits.Count; i++)
|
|
{
|
|
aDigits[i] = prime - 1 - aDigits[i];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the given list of base 'prime' integers converted to a decimal integer.
|
|
*/
|
|
private int ConvertToDecimal(List<int> aNumbers)
|
|
{
|
|
int decimal_value = 0;
|
|
int multiple = 1;
|
|
foreach (int number in aNumbers)
|
|
{
|
|
decimal_value += number * multiple;
|
|
multiple *= prime;
|
|
}
|
|
|
|
return decimal_value;
|
|
}
|
|
|
|
/**
|
|
* Return whether the given list consists of all zeros.
|
|
*/
|
|
private static bool AllZeroDigits(List<int> aList)
|
|
{
|
|
return aList.All(i => i == 0);
|
|
}
|
|
|
|
/**
|
|
* The given list is padded on the right by zeros up to a maximum length of 'PRECISION'.
|
|
*/
|
|
private static void PadWithZeros(List<int> aList)
|
|
{
|
|
while (aList.Count < DIGITS_SIZE)
|
|
{
|
|
aList.Add(0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return whether the given list ends with multiple instances of the given number.
|
|
*/
|
|
private static bool EndsWith(List<int> aDigits, int aDigit)
|
|
{
|
|
for (int i = aDigits.Count - 1; i >= aDigits.Count - PRECISION / 2; i--)
|
|
{
|
|
if (aDigits[i] != aDigit)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* C# implementation of Java's Math.floorMod
|
|
*/
|
|
private static int FloorMod(int x, int y)
|
|
{
|
|
int r = x % y;
|
|
// If the signs are different and modulo not zero, adjust result
|
|
if ((x ^ y) < 0 && r != 0)
|
|
{
|
|
r += y;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
public class Rational
|
|
{
|
|
private int numerator;
|
|
private int denominator;
|
|
|
|
public Rational(int aNumerator, int aDenominator)
|
|
{
|
|
if (aDenominator < 0)
|
|
{
|
|
numerator = -aNumerator;
|
|
denominator = -aDenominator;
|
|
}
|
|
else
|
|
{
|
|
numerator = aNumerator;
|
|
denominator = aDenominator;
|
|
}
|
|
|
|
if (aNumerator == 0)
|
|
{
|
|
denominator = 1;
|
|
}
|
|
|
|
int gcd = GCD(numerator, denominator);
|
|
numerator /= gcd;
|
|
denominator /= gcd;
|
|
}
|
|
|
|
public override string ToString()
|
|
{
|
|
return numerator + " / " + denominator;
|
|
}
|
|
|
|
private int GCD(int aOne, int aTwo)
|
|
{
|
|
if (aTwo == 0)
|
|
{
|
|
return Math.Abs(aOne);
|
|
}
|
|
return GCD(aTwo, FloorMod(aOne, aTwo));
|
|
}
|
|
}
|
|
|
|
private List<int> digits;
|
|
private int order;
|
|
|
|
private readonly int prime;
|
|
|
|
private const int MAX_ORDER = 1000;
|
|
private const int PRECISION = 40;
|
|
private const int DIGITS_SIZE = PRECISION + 5;
|
|
}
|