RosettaCodeData/Task/Multiplicative-order/Ruby/multiplicative-order.rb

42 lines
812 B
Ruby

require 'prime'
def powerMod(b, p, m)
p.to_s(2).each_char.inject(1) do |result, bit|
result = (result * result) % m
bit=='1' ? (result * b) % m : result
end
end
def multOrder_(a, p, k)
pk = p ** k
t = (p - 1) * p ** (k - 1)
r = 1
for q, e in t.prime_division
x = powerMod(a, t / q**e, pk)
while x != 1
r *= q
x = powerMod(x, q, pk)
end
end
r
end
def multOrder(a, m)
m.prime_division.inject(1) do |result, f|
result.lcm(multOrder_(a, *f))
end
end
puts multOrder(37, 1000)
b = 10**20-1
puts multOrder(2, b)
puts multOrder(17,b)
b = 100001
puts multOrder(54,b)
puts powerMod(54, multOrder(54,b), b)
if (1...multOrder(54,b)).any? {|r| powerMod(54, r, b) == 1}
puts 'Exists a power r < 9090 where powerMod(54,r,b)==1'
else
puts 'Everything checks.'
end