RosettaCodeData/Task/Miller-Rabin-primality-test/Erlang/miller-rabin-primality-test...

91 lines
2.3 KiB
Erlang

-module(miller_rabin).
-export([is_prime/1, power/2]).
is_prime(1) -> false;
is_prime(2) -> true;
is_prime(3) -> true;
is_prime(N) when N > 3, ((N rem 2) == 0) -> false;
is_prime(N) when ((N rem 2) ==1), N < 341550071728321 ->
is_mr_prime(N, proving_bases(N));
is_prime(N) when ((N rem 2) == 1) ->
is_mr_prime(N, random_bases(N, 100)).
proving_bases(N) when N < 1373653 ->
[2, 3];
proving_bases(N) when N < 9080191 ->
[31, 73];
proving_bases(N) when N < 25326001 ->
[2, 3, 5];
proving_bases(N) when N < 3215031751 ->
[2, 3, 5, 7];
proving_bases(N) when N < 4759123141 ->
[2, 7, 61];
proving_bases(N) when N < 1122004669633 ->
[2, 13, 23, 1662803];
proving_bases(N) when N < 2152302898747 ->
[2, 3, 5, 7, 11];
proving_bases(N) when N < 3474749660383 ->
[2, 3, 5, 7, 11, 13];
proving_bases(N) when N < 341550071728321 ->
[2, 3, 5, 7, 11, 13, 17].
is_mr_prime(N, As) when N>2, N rem 2 == 1 ->
{D, S} = find_ds(N),
%% this is a test for compositeness; the two case patterns disprove
%% compositeness.
not lists:any(fun(A) ->
case mr_series(N, A, D, S) of
[1|_] -> false; % first elem of list = 1
L -> not lists:member(N-1, L) % some elem of list = N-1
end
end,
As).
find_ds(N) ->
find_ds(N-1, 0).
find_ds(D, S) ->
case D rem 2 == 0 of
true ->
find_ds(D div 2, S+1);
false ->
{D, S}
end.
mr_series(N, A, D, S) when N rem 2 == 1 ->
Js = lists:seq(0, S),
lists:map(fun(J) -> pow_mod(A, power(2, J)*D, N) end, Js).
pow_mod(B, E, M) ->
case E of
0 -> 1;
_ -> case ((E rem 2) == 0) of
true -> (power(pow_mod(B, (E div 2), M), 2)) rem M;
false -> (B*pow_mod(B, E-1, M)) rem M
end
end.
random_bases(N, K) ->
[basis(N) || _ <- lists:seq(1, K)].
basis(N) when N>2 ->
1 + random:uniform(N-3). % random:uniform returns a single random number in range 1 -> N-3, to which is added 1, shifting the range to 2 -> N-2
power(B, E) ->
power(B, E, 1).
power(_, 0, Acc) ->
Acc;
power(B, E, Acc) ->
power(B, E - 1, B * Acc).